The cosmological constant, third quantization and all that

  • G. Lavrelashvili
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 383)


The paper consists of two main parts. The first part contains a short review of recent works on the application of the third quantization method to the cosmological constant problem. In the second part critical consideration is given to Dirac's scheme of gravity quantization. We suppose that Dirac's scheme may turn out inadequate for gravity quantization because of anomalies arising in the algebra of constraints.


Scalar Field Quantum Gravity Quantization Scheme Hamiltonian Constraint Cosmological Constant Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.Baum, Phys.Lett. 133B (1983) 185Google Scholar
  2. 2.
    S. W. Hawking, Phys. Lett. 134B (1984) 403Google Scholar
  3. 3.
    S. Coleman, Nucl. Phys. B310 (1988) 643Google Scholar
  4. 4.
    S. Weinberg, Rev. Mod. Phys. 61 (1989) 1Google Scholar
  5. 5.
    S.W.Hawking, Phys.Lett. 195B (1987) 377Google Scholar
  6. 6.
    G. V. Lavrelashvili, V. A. Rubakov and P.G. Tinyakov, JETP Lett. 46 (1987) 167, Nucl.Phys. B299 (1988) 757Google Scholar
  7. 7.
    S.Giddings and A.Strominger, Nucl.Phys. B306 (1988) 890Google Scholar
  8. 8.
    S.Coleman, Nucl.Phys. B307 (1988) 867Google Scholar
  9. 9.
    S.Giddings and A.Strominger, Nucl.Phys. B307 (1988) 854Google Scholar
  10. 10.
    T.Banks, Nucl.Phys B309 (1988) 493Google Scholar
  11. 11.
    S.B.Giddings and A.Strominger, Nucl.Phys. B321 (1988) 481Google Scholar
  12. 12.
    A.Strominger, Baby Universes, UCSB preprint (1988)Google Scholar
  13. 13.
    V.A.Rubakov, Phys.Lett. 214B (1988) 503Google Scholar
  14. 14.
    W.Fischler, I.Klebanov, J.Polchinski and L.Susskind, Nucl.Phys. B327 (1989) 157Google Scholar
  15. 15.
    A.Hosoya and M.Morikawa, Phys.Rev. D39 (1989) 1123Google Scholar
  16. 16.
    G. V. Lavrelashvili, V. A. Rubakov, M. S. Serebryakov and P. G. Tinyakov, Nucl.Phys. B329 (1990) 98Google Scholar
  17. 17.
    V.A.Rubakov and P.G.Tinyakov, Nucl.Phys. B342 (1990) 430Google Scholar
  18. 18.
    G.V.Lavrelashvili, V.A.Rubakov and P.G.Tinyakov, “Wormholes, third quantization and the problem of the negative cosmological constant”, To appear in: “Proceedings of the V Seminar on Quantum Gravity”, Moscow, 1990, (World Scientific)Google Scholar
  19. 19.
    B.DeWitt Phys.Rev.160 (1967) 1113Google Scholar
  20. 20.
    M.I.Kalinin and V.N.Melnikov, Proc.VNIIFTRI 16 (1972) 43 (State Committe of Standards, Moscow)Google Scholar
  21. 21.
    J.Hartle and S.W.Hawking, Phys.Rev. D28 (1983) 2960Google Scholar
  22. 22.
    A.A.Starobinsky, Talk at P.K.Sternberg State Astronomical Inst. Seminar (1983), unpublishedGoogle Scholar
  23. 22a.
    A.D.Linde, Lett.Nuovo Cimento 39 (1984) 401Google Scholar
  24. 23.
    V.A.Rubakov, Phys.Lett. 148B (1984) 280Google Scholar
  25. 24.
    A.Vilenkin, Phys.Rev. D30 (1984) 549Google Scholar
  26. 25.
    R.Arnowitt, S.Deser, and C.W.Misner, in Gravitation: An Introduction to Current Research, edited by L.Witten (Willey, New York) 1962Google Scholar
  27. 26.
    M.Heneaux, Principles of string theory,(Plenum Press), 1988Google Scholar
  28. 27.
    N.N.Bogoliubov and D.V.Shirkov, Introduction to the Theory of Quantized Fields, Moscow, Nauka, 1976 (In Russian)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • G. Lavrelashvili
    • 1
  1. 1.Tbilisi Mathematical InstituteTbilisiUSSR

Personalised recommendations