Advertisement

Multivariate analysis and pattern recognition methods: A short review and some current directions

  • F. Murtagh
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 383)

Keywords

Minimal Span Tree Edge Weight Voronoi Diagram Relative Neighbor Hierarchical Cluster Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    S.P.Bhavsar and E.N. Ling, “Are the filaments real?”, The Astrophysical Journal, 331, L63–L68, 1988.Google Scholar
  2. 2.
    F. Murtagh and A. Heck, Multivariate Data Analysis, Kluwer, Dordrecht, 1987.Google Scholar
  3. 3.
    F. Murtagh and Ph. Nobelis, “Statistical software”, in C. Jaschek and F. Murtagh (Eds.), Errors, Bias and Uncertainties in Astronomy, Cambridge University Press, Cambridge (U.K.), 1990, pp. 245–260.Google Scholar

Bibliography

  1. 1.
    Graphy theory: e.g. A. Tucker, Applied Combinatorics, Wiley, New York, 1980.Google Scholar
  2. 2.
    Minimal spanning tree: the seminal article is by C.T. Zahn, “Graph-theoretical methods for detecting and describing Gestalt clusters”, IEEE Transactions on Computers, C-20, 68–86, 1971.Google Scholar
  3. 2a.
    V. Di Gesù and C. Zahn, “Experiments with a general dotted curve finder”, SLAC Computation Research Group technical report CGTM No. 161, Oct. 1974.Google Scholar
  4. 2b.
    J.D. Barrow, S.P. Bhavsar and D.H. Sonoda, “Minimal spanning trees, filaments and galaxy clustering”, Monthly Notices of the Royal Astronomical Society, 216, 17–35, 1985.Google Scholar
  5. 2c.
    S.P. Bhavsar and E.N. Ling, “Are the filaments real?”, The Astrophysical Journal, 331, L63–L68, 1988.Google Scholar
  6. 2d.
    M.R. Garey and D.S. Johnson, Computers and Intractability. A Guide to the Theory of NP-Completeness, W.H. Freeman, San Francisco, 1979.Google Scholar
  7. 2e.
    F. Murtagh, Multidimensional Clustering Algorithms, COMPSTAT Lectures Volume 4, Physica-Verlag, Vienna and Würzburg, 1985.Google Scholar
  8. 3.
    Voronoi diagrams: V. Icke and R. van de Weygaert, “Fragmenting the universe. I. Statistics of two-dimensional Voronoi foams”, Astronomy and Astrophysics, 184, 16–32, 1987.Google Scholar
  9. 3a.
    V. Icke and R. van de Weygaert, “Voronoi cosmology”, Quarterly Journal of the Royal Astronomical Society, 1990 (in press).Google Scholar
  10. 3b.
    F.P. Preparata and M.I. Shamos, Computational Geometry, Springer-Verlag, New York, 1985.Google Scholar
  11. 3c.
    D.T. Lee and R.P. Preparata, “Computational geometry — a survey”, IEEE Transactions on Computers, C-33, 1072–1101, 1984.Google Scholar
  12. 3d.
    N. Ahuja, “Dot pattern processing using Voronoi neighborhoods”, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4, 336–343, 1982.Google Scholar
  13. 3e.
    S.K. Bhaskar, A. Rosenfeld and A. Wu, “Models for neighbor dependency in planar point patterns”, Pattern Recognition, 22, 533–559, 1989.Google Scholar
  14. 3f.
    F. Aurenhammer and H. Edelsbrunner, “An optimal algorithm for constructing the weighted Voronoi diagram in the plane”, Pattern Recognition, 17, 251–257, 1984.Google Scholar
  15. 4.
    Other graph-theoretic structures: R. Urquhart, “Graph theoretical clustering based on limited neighborhood sets”, Pattern Recognition 15, 173–187, 1982; “Erratum”, Pattern Recognition 15, 427, 1982.Google Scholar
  16. 4a.
    D.W. Matula and R.R. Sokal, “Properties of Gabriel Graphs relevant to geographic variation research and the clustering of points in the plane”, Geographical Analysis, 12, 205–222, 1980.Google Scholar

Bibliography

  1. 1.
    Partitioning: H. Späth, Cluster Dissection and Analysis: Theory, Fortran Programs, Examples, Ellis Horwood, Chichester (U.K.), 1985.Google Scholar
  2. 2.
    Mode detection: F. Murtagh, “Algorithms for contiguity-constrained clustering”, The Computer Journal, 28, 82–88, 1985.Google Scholar
  3. 3.
    Hierarchical clustering: F. Murtagh, Multidimensional Clustering Algorithms, Physica-Verlag, Würzburg and Vienna, 1985.Google Scholar
  4. 3a.
    F. Murtagh, and A. Heck, Multivariate Data Analysis, Kluwer Academic Publishers, Dordrecht, 1987.Google Scholar
  5. 4.
    Discriminant analysis: F. Murtagh and A. Heck (1987), reference above.Google Scholar
  6. 4a.
    D.J. Hand, Discrimination and Classification, Wiley, New York, 1981.Google Scholar

Bibliography

  1. 1.
    F. Murtagh, “Linear regression with errors in both variables: a short review”, in C. Jaschek and F. Murtagh (Eds.), Errors, Bias and Uncertainties in Astronomy, Cambridge University Press, Cambridge (U.K.), 1990, pp. 385–391.Google Scholar
  2. 2.
    E.D. Feigelson, “Censored date in astronomy”, in C. Jaschek and F. Murtagh (Eds.), Errors, Bias and Uncertainties in Astronomy, Cambridge University Press, Cambridge (U.K.), 1990, pp. 213–226Google Scholar
  3. 4.
    S.P. Bhavsar, “Bootstrap, data permuting and extreme value distributions — getting the most out of small samples”, in C. Jaschek and F. Murtagh (Eds.), Errors, Bias and Uncertainties in Astronomy, Cambridge University Press, Cambridge (U.K.), 1990, pp. 107–122.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • F. Murtagh
    • 1
  1. 1.Space Telescope — European Coordinating FacilityEuropean Southern ObservatoryGarchingGermany

Personalised recommendations