Advertisement

Stability of compactification in Einstein-Yang-Mills theories

  • O. Bertolami
  • Yu. A. Kubyshin
  • J. M. Mourão
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 383)

Abstract

We study the dynamics of multidimensional Einstein-Yang-Mills cosmologies. The stability of compactification after the period of inflationary expansion of the external dimensions is analysed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Kaluza, Sitzungsber. Preuss. Acad. Wiss. Phys. Math. K1 (1921) 996Google Scholar
  2. [1a]
    O. Klein, Z. Phys. 37 (1926) 895.Google Scholar
  3. [2]
    M.J. Duff, B.E.W. Nilsson and C.N. Pope, Phys. Rep. 130 (1986) 1Google Scholar
  4. [2a]
    J. Rayski, Acta Phys. Polon., 27 (1965) 947; 28 (1965) 87Google Scholar
  5. [2b]
    R. Kerner, Ann. Inst. H. Poinc., A9 (1968) 143Google Scholar
  6. [2c]
    A. Trautman, Rep. Math. Phys, 1 (1970) 29Google Scholar
  7. [2d]
    Y.M. Cho, J. Math. Phys. 16 (1975) 2029.Google Scholar
  8. [3]
    R. Coquereaux and A. Jadczyk, “Riemannian geometry, fiber bundles, Kaluza-Klein theories and all that...” (World Scientific Lecture Notes in Physics, Vol. 16, Singapore, 1988).Google Scholar
  9. [4]
    N.S.Manton, Nucl. Phys. B158 (1979) 141Google Scholar
  10. [4a]
    P. Forgacs and N.S. Manton, Commun. Math Phys. 72 (1980) 15.Google Scholar
  11. [5]
    I.P Volobujev and G. Rudolph, Theor. Math. Phys. 62 (1985) 261Google Scholar
  12. [5a]
    I.P. Volobujev and Yu.A. Kubyshin, Theor. Math. Phys 68 (1986) 788; 68 (1986) 885Google Scholar
  13. [5b]
    Yu.A. Kubyshin, J.M. Mourão and I.P. Volobujev, Int. J. Mod. Phys. A4 (1989) 151; Theor. Math. Phys. 78 (1989) 41; 78 (1989) 191Google Scholar
  14. [5c]
    G. Rudolph and I.P. Volobujev, Nucl. Phys. B313 (1989) 95.Google Scholar
  15. [6]
    F.A. Bais, K.J. Barnes, P. Forgacs and G. Zoupanos, Nucl. Phys. B263 (1986) 557Google Scholar
  16. [6a]
    N.G. Kozimirov and I.I. Tkachev, Z. Phys C36 (1987) 83Google Scholar
  17. [6b]
    K. Farakos, G. Koutsoumbas, M. Surridge and G. Zoupanos, Nucl. Phys. B291 (1987) 128Google Scholar
  18. [6c]
    K. Farakos, D. Kapetanakis, G. Koutsoumbas and G. Zoupanos, Phys Lett. 211B (1988) 322.Google Scholar
  19. [7]
    I.P. Volobujev, Yu.A. Kubyshin, JETP Letters 45 (1987) 581; Theor. Math. Phys. 75 (1988) 509Google Scholar
  20. [7a]
    Yu.A. Kubyshin, J.M. Mourão, G. Rudolph and I.P. Volobujev, “Dimensional Reduction of Gauge, Theories, Spontaneous Compactification and Model Building (Lecture Notes in Physics Vol. 349, Springer-Verlag, 1989).Google Scholar
  21. [8]
    M. Surridge, Z. Phys. C37 (1987) 77Google Scholar
  22. [8a]
    Yu.A. Kubyshin, J.M. Mourão and I.P. Volobujev, Phys. Lett 203B (1988) 349; Nucl. Phys. B322 (1989) 531Google Scholar
  23. [8b]
    A. Nakamura and K. Shiraishi “Spontaneous compactification and structure of gauge vacua in six-dimensional gauge theory”, preprint INS-Rep. 795 (1989).Google Scholar
  24. [9]
    Yu.A. Kubyshin, V.A. Rubakov and I.I. Tkachev, Int. J. Mod. Phys. A4 (1989) 1409.Google Scholar
  25. [10]
    E. Cremmer and J. Scherk, Nucl. Phys. B118 (1977) 61Google Scholar
  26. [10a]
    J.F. Luciani, Nucl. Phys. B135 (1978) 111.Google Scholar
  27. [11]
    S. Randjbar-Daemi, A. Salam and J. Strathdee, Nucl Phys. B214 (1983) 491; Phys. Lett. 124B (1983) 345.Google Scholar
  28. [12]
    A.N. Schellekens, Nucl. Phys. B248 (1984) 704; Phys. Lett. 143B (1984) 121.Google Scholar
  29. [13]
    P. Forgacs, Z. Horvath and L. Palla, Phys. Lett. 147B (1984) 311.Google Scholar
  30. [14]
    P.G.O. Freund, Nucl.Phys. B209 (1982) 146Google Scholar
  31. [14a]
    V.A. Rubakov and M.E. Shaposhnikov, Phys. Lett. 125B (1983) 139Google Scholar
  32. [14b]
    Q. Shafi and C. Wetterich. Phys. Lett. 129B (1983) 387; Phys. Lett. 152B (1985) 51Google Scholar
  33. [14c]
    E.W. Kolb and R. Slansky, Phys. Lett. 135B (1984) 378Google Scholar
  34. [14d]
    A.B. Henriques, Nucl. Phys. B277 (1986) 621Google Scholar
  35. [14e]
    A.B. Henriques, A.R. Liddle and R.G. Moorhouse, Nucl. Phys, B311 (1989) 719.Google Scholar
  36. [15]
    E.W. Kolb. M.J. Perry and T.P. Walker, Phys. Rev. D33 (1986) 869Google Scholar
  37. [15a]
    K. Maeda, Phys. Lett. 186B (1987) 33.Google Scholar
  38. [16]
    L. Amendola, E.W. Kolb, M. Litterio and F. Occhionero, Phys. Rev. D42 (1990) 1944.Google Scholar
  39. [17]
    G. Clement, Class. Quantum Grav. 5 (1988) 325.Google Scholar
  40. [18]
    O. Bertolami, J.M. Mourão, R.F. Picken and I.P. Volobujev, “Dynamics of Euclideanized Einstein-Yang-Mills Systems with Arbitrary Gauge Groups” Lisbon Preprint, IFM-9/90, to appear in the Int. J. Mod. Phys. A; P.V. Moniz and J.M. Mourão, “Homogeneous and isotropic closed cosmologies with a gauge sector” Lisbon Preprint IFM-11/90.Google Scholar
  41. [19]
    A. Salam and J. Strathdee, Ann. Phys. (N. Y.) 141 (1982) 316.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • O. Bertolami
    • 1
  • Yu. A. Kubyshin
    • 2
  • J. M. Mourão
    • 3
    • 4
  1. 1.Centro de Física da Matéria CondensadaLisboa-CodexPortugal
  2. 2.Nuclear Physics InstituteMoscow State UniversityMoscowUSSR
  3. 3.Centro de Física NuclearLisboa-CodexPortugal
  4. 4.Departamento de FísicaInstituto Superior TécnicoLisboaPortugal

Personalised recommendations