Advertisement

The early universe behaviour with non-minimal coupling

  • P. Moniz
  • P. Crawford
  • A. Barroso
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 383)

Abstract

We comment on the stability problem of the equilibrium states of our Universe. With a specific ansatz for the ground state we re-examine the physics of spontaneous symmetry breaking in curved space-time. Introducing a non-minimal coupling between a scalar field (a multiplet under the action of a gauge group) and gravity we show that spontaneous symmetry breaking may occur without the need of a negative value for m2. Within this framework we calculate the Higgs mass, the value of the cosmological constant and of the effective gravitational constant.

Keywords

Gauge Group Scalar Field Cosmological Constant Higgs Mass Spontaneous Symmetry Breaking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Linde, “Particle Physics and Inflationary Cosmology”, Contemporary Concepts in Physics, Volume 5, Harwood Academic Publishers (Chur, 1990)Google Scholar
  2. [2]
    E. Kolb and M. Turner, “The Early Universe”, Lecture Note Series — Frontier in Physics — 69, Addison-Wesley (Boston, 1990)Google Scholar
  3. [3]
    Rosa Dominguez-Tenreiro and Mariano Quirós, “An introduction to Cosmology and Particle Physics”, World Scientific Publishing Co. (Singapore, 1988)Google Scholar
  4. [4]
    J. V. Narlikar and T. Padmanabhan, “Gravity, Gauge Theories and Quantum Cosmology”, D. Reidel Publishing Co. (Dordrecht, 1986)Google Scholar
  5. [5]
    L.Z. Fang and R. Ruffini (eds.), “Quantum Cosmology”, in Advanced Series in Astrophysics and Cosmology — Vol. 3, World Scientific Publishing Co. (Singapore, 1987)Google Scholar
  6. [6]
    J. Hartle and S.W. Hawking, Phys. Rev D28 (1983) 2960Google Scholar
  7. [7]
    S.W. Hawking, Nucl. Phys. B244, (1984) 135Google Scholar
  8. [8]
    S.W. Hawking and P.C. Luttrell, Nucl. Phys. B247 (1984) 250Google Scholar
  9. [8a]
    I.G. Moss and W.A. Wright, Phys.Rev. D29, (1984) 1069Google Scholar
  10. [8b]
    S.W. Hawking and Z.C. Wu, Phys. Lett. 151B (1985) 15Google Scholar
  11. [8c]
    P.F. Gonzalez-Dias, Phys.Lett. 159B (1985) 19Google Scholar
  12. [8d]
    D.N. Page in Quantum Conceptes of Space and Time, R. Penrose and C.J. Isham (eds), Claredon Press, (Oxford, 1986)Google Scholar
  13. [9]
    G. Esposito and G. Platania, Class. Quantum Grav. 5 (1988) 937Google Scholar
  14. [10]
    D. Bailin and A. Love, “Introduction to Gauge Field Theory”, Adam and Hilger (Bristol, 1986)Google Scholar
  15. [11]
    T.P. Cheng and L.F. Li, “Gauge Theory of Elementary Particle Physics”, Oxford University Press, 1988.Google Scholar
  16. [12]
    P. Crawford, “Soluções Cosmológicas com Campos não Abelianos”, Ph.D. Thesis, Universidade de Lisboa, 1987Google Scholar
  17. [13]
    P. Moniz, “Homogeneous Cosmologies with Scalar Fields”, M.Sc. Thesis, Universidade de Lisboa, 1990Google Scholar
  18. [14]
    P. Moniz, P. Crawford and A. Barroso, Class. Quantum Grav. 7 (1990) L143Google Scholar
  19. [15]
    M.S. Madsen, Class. Quantum Grav. 5 (1988) 627.Google Scholar
  20. [16]
    Y. Hosotani, Phys.Rev. D32 (1985) 1949.Google Scholar
  21. [17]
    L.H. Ford, Phys. Rev. D35 (1987) 2339.Google Scholar
  22. [18]
    J. D. Bekenstein, Found. Phys. 16 (1986) 409.Google Scholar
  23. [19]
    G. Denardo and E. Spallucci, Nuov. Cim. 83 (1984) 35.Google Scholar
  24. [20]
    O. Bertolami Phys. Lett. 86B (1987) 161Google Scholar
  25. [21]
    A Grib, V.M. Mostepanenko and V.M. Frolov, Theor. Math. Phys. 33 (1977) 42Google Scholar
  26. [22]
    B.L. Hu and D.J. O'Connor, Phys. Rev. D36 (1987) 1701Google Scholar
  27. [23]
    A.D. Dolgov, “An attempt to get rid of the Cosmological constant”, in The Very Early Universe, G.W. Gibbons, S.W. Hawking and S.T.C. Siklos (eds.), Cambridge University Press (Cambridge, 1983)Google Scholar
  28. [24]
    B. Allen, Nucl. Phys. B226 (1983) 288Google Scholar
  29. [25]
    R. Fakir and W.G. Unruh, Phys. Rev. D41 (1990) 1783Google Scholar
  30. [25a]
    R. Fakir and W.G. Unruh, Phys. Rev. D41 (1990) 1792Google Scholar
  31. [25b]
    R. Fakir, Phys. Rev. D41 (1990) 3012Google Scholar
  32. [26]
    R. M. Wald, Phys. Rev. D28 (1983) 2118Google Scholar
  33. [27]
    G. W. Gibbons and S. W. Hawking, Phys. Rev. D15 (1977) 2738Google Scholar
  34. [28]
    W. Boucher and G. W. Gibbons, “Cosmic Baldness” in The Very Early Universe, G. W. Gibbons, S. W. Hawking and S. T. C. Siklos (eds), Cambridge University Press (Cambridge, 1983)Google Scholar
  35. [29]
    S. W. Hawking and I. G. Moss, Phys. Lett. 110B (1982) 35Google Scholar
  36. [30]
    N.D. Birrell and P.C.W. Davies, “Quantum Fields in Curved Spaces”, Cambridge University Press (Cambridge, 1982)Google Scholar
  37. [31]
    M.P. Ryan and L.C. Sheppley, “Homogeneous Relativistic Cosmologies”, Princepton University Press (Princepton, 1975)Google Scholar
  38. [32]
    A. Linde, Phys. Lett. 93B (1980) 394Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • P. Moniz
    • 1
  • P. Crawford
    • 1
  • A. Barroso
    • 1
  1. 1.Departamento de FísicaUniversidade de LisboaLisboaPortugal

Personalised recommendations