Advertisement

Self-gravitating magnetic monopoles, global monopoles and black holes

  • G. W. Gibbons
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 383)

Keywords

Black Hole Event Horizon Cosmic String Magnetic Monopole Higgs Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S L Adler and R P Pearson, No Hair theorem for the Abelian Higgs and Goldstone models. Phys Rev D18, 2798–2803 (1978)Google Scholar
  2. I K Affleck, O Alvarez and N S Manton, Pair production at strong coupling in weak external fields. Nucl. Phys B197 509–519 (1982)Google Scholar
  3. I K Affleck and N S Manton Monopole pair production in a magnetic field. Nucl Phys B194 38–64 (1982)Google Scholar
  4. F J Almgren and E H Lieb, Counting Singularities in liquid crystals. Proc. IXth International Congress on Mathematical Physics, eds B Simon, A Truman and I M Davies, Adam Hilger 1989Google Scholar
  5. F Almgren and E Lieb, Singularities of energy minimizing maps form the ball to the sphere: examples counter examples and bounds, Ann of Math. 128 483–430 (1988)Google Scholar
  6. M Aryal, L H Ford and A Vilenkin, Cosmic Strings and Black Holes, Phys Rev D34 2263–2266 (1986)Google Scholar
  7. A Ashtekar and T Dray, On the Existence of solutions to Einstein's Equation with Non-Zero Bondi News. Commun. Math. Phys 79 581–589 (1981)Google Scholar
  8. F A Bais and R J Russell, Magnetic-monopole solution of the non-Abelian gauge theory in curved spacetime. Phys Rev D11 2692–2695 (1975)Google Scholar
  9. R Bartnik and J McKinnon, Particle like solutions of the Einstein-Yang-Mills equations. Phys Rev Lett 61 141–144 (1988)Google Scholar
  10. M Barriola and A Vilenkin, Gravitational field of a global monopole. Phys. Rev. Lett 63 341–343 (1989)Google Scholar
  11. J Bicak, The motion of a charged black hole in an electromagnetic field. Proc. Roy. Soc. A371 429–438 (1980)Google Scholar
  12. W B Bonnor, The sources of the vacuum C-metric. Gen. Rel. Grav. 15 535–551 (1983)Google Scholar
  13. W B Bonnor, The C-metric in Bondi's coordinates. Class. Quant. Grav. 7 L229–L230 (1990)Google Scholar
  14. P Bizon, Colored Black Holes. Phys. Rev. Letts 64 2844–2847 (1990)Google Scholar
  15. P J Braam, A Kaluza-Klein approach to hyperbolic three-manifolds. Enseign. Math 34 275–311 (1985)Google Scholar
  16. R A Brandt and F Neri, Stability Analysis for Singular Non-Abelian Magnetic monopoles Nucl. Phys. B161 253–282 (1979)Google Scholar
  17. P B Breitenlohner, G W Gibbons and D Maison, 4-dimensional Black Holes from Kaluza-Klein Theory. Commun. Math. Phys. 120 295–334 (1988)Google Scholar
  18. H Brezis, J M Coron and E Lieb, Harmonic Maps with defects. Commun. Math. Phys 107 649–705 (1986)Google Scholar
  19. B E Brumbaugh, Nonlinear scalar field dynamics in Schwarzschild geometry. Phys. Rev. D18 1335–1338 (1978)Google Scholar
  20. S Chandrasehkar and B C Xanthopoulos two Black Holes attached to strings. Proc. Roy. Soc. A423 387–400 (1989)Google Scholar
  21. T Chmaj and E Malec, Magnetic monopoles and gravitational collapse. Class and Quantum Grav. 6 1687–1696 (1989)Google Scholar
  22. Y M Cho and P G O Freund, Gravitating 't Hooft monopoles. Phys. Rev. D12 1588–1589, (1975)Google Scholar
  23. S Coleman in “The Unity of Fundamental interactions” ed. A Zichichi (Plenum, New York ) (1983)Google Scholar
  24. A Comtet, Magnetic Monopoles in curved spacetimes. Ann. Inst. H Poincare 23 283–293 (1980)Google Scholar
  25. A Comtet, P Forgacs and P A Horvathy, Bogomolnyi-type equations in curved spacetime. Phys. Rev D30 468–471 (1984)Google Scholar
  26. A Comtet and G W Gibbons, Bogomol'nyi Bounds for Cosmic Strings. Nucl. Phys. B299 719–733 (1989)Google Scholar
  27. A D Dolgov, Gravitational Dipole. JETP Lett. 51 393–396 (1990)Google Scholar
  28. T Dray, On the Asymptotic Flatness of the C Metrics at Spatial Infinity. Gen.Rel.Grav. 14 109–112 (1982)Google Scholar
  29. T Dray and M Walker, On the regularity of Ernst's generalized C-metric. L.I.M.P. 4 15–18 (1980)Google Scholar
  30. F J Ernst, Black holes in a magnetic universe. J.M.P. 17 54–56 (1976)Google Scholar
  31. F J Ernst, Removal of the nodal singularity of the C-metric. J.M.P. 17 515–516 (1976)Google Scholar
  32. F J Ernst, Generalized C-metric. J.M.P. 19 1986–1987 (1978)Google Scholar
  33. F J Ernst and W J Wild, Kerr black holes in a magnetic universe. J.M.P. 17 182–184 (1976)Google Scholar
  34. A A Ershov and D V Gal'tsov, Non Existence of regular monoples and dyons in the SU(2) Einstein-Yang-Mills theory. Phys. Letts. 150A 159–162 (1990)Google Scholar
  35. J A Frieman and C T Hill, Imploding Monopoles. SLAC-PUB-4283 Oct. 1987 T/ASGoogle Scholar
  36. A Floer, Monopoles on asymptotically Euclidean manifolds. Bull. AMS 16 125–127 (1987)Google Scholar
  37. D V Gal'tsov and A A Ershov, Non-abelian baldness of coloured black holes. Phys. Letts A138 160–164 (1989)Google Scholar
  38. D Garfinkle and A Strominger, Semi-classical Wheeler Wormhole Production. UCSBTH-90-17Google Scholar
  39. G W Gibbons Non-existence of Equilibrium Configurations of Charged Black holes. Proc. Roy. Soc. A372 535–538 (1980)Google Scholar
  40. G W Gibbons, Quantised Flux-Tubes in Einstein-Maxwell theory and non-compact internal spaces, in Fields and Geometry Proc. of XII Karpac Winter School of Theoretical Physics 1986, ed A Jadczyk, World ScientificGoogle Scholar
  41. B B Godfrey, Horizons in Weyl metrics exhibiting extra symmetries. G.R.G. 3 3–15 (1972)Google Scholar
  42. A Goldhaber, Collapse of a Global Monopole. Phys. Rev. Letts 63 2158(c) (1989)Google Scholar
  43. Gu Chao-hao, On Classical Yang-Mills Fields. Phys. Rep. 80 251–337 (1981)Google Scholar
  44. P Hajicek, Wormhole solutions in the Einstein-Yang-Mills-Higgs system. I General theory of zero-order structure. Proc. Roy. Soc A 386 223–240 (1983)Google Scholar
  45. P Hajicek, Wormhole solutions in Einstein-Yang-Mills-Higgs system II Zeroth-order structure for G = SU(2). J. Phys. A16 1191–1205 (1983)Google Scholar
  46. P Hajicek, Classical Action Functional for the system of fields and wormholes. Phys. Rev. D26 3384–2295 (1982)Google Scholar
  47. P Hajicek, Generating functional Zo for the one-wormhole sector. Phys. Rev. D26 3396–3411 (1982)Google Scholar
  48. P Thomi, B Isaak and P Hajicek, Spherically Symmetric Systems of Fields and Black Hole. I Definition and properties of Apparent Horison. Phys. Rev. D30 1168–1171 (1984)Google Scholar
  49. P Hajicek, Spherically symmetric systems of fields and black holes. II Apparent horizon in canonical formalism. Phys. Rev. D30 1178–1184 (1984)Google Scholar
  50. P Hajicek, Spherically symmetric systems of fields and black holes. III Positively of enemy and a new type of Euclidean action. Phys. Rev. D30 1185–1193 (1984)Google Scholar
  51. P Hajicek, Spherically symmetric systems of fields and black holes. IV No room for black hole evaporation in the reduced configuration space? Phys. Rev. D31 785–795 (1985)Google Scholar
  52. P Hajicek, Spherically symmetric systems of fields and black holes. V Predynamical properties of causal structure. Phys. Rev. D31 2452–2458 (1985)Google Scholar
  53. P Hajicek, Quantum theory of wormholes. Phys. Letts 106B 77–80 (1981)Google Scholar
  54. P Hajicek, Quantum wormholes (I). Choice of the classical solutions. Nuc. Phys. B185 254–268 (1981)Google Scholar
  55. P Hajicek, Duality in Klein-Kaluza Theories. BUTP-9/82Google Scholar
  56. P Hajicek, Exact Models of Charged Black Holes. 1: Geometry of totally geodesic null hypersurface. Commun. M. Phys. 34 37–52 (1973)Google Scholar
  57. P Hajicek, Exact Models of Charged Black Holes II: Axisymmetries Sationary Horizons. Commun. M. Phys 34 53–76 (1973)Google Scholar
  58. P Hajicek, Can outside fields destroy black holes. J. Math. Phys. 15 1554 (1974)Google Scholar
  59. D Harari and C Lousto, Repulsive gravitaional effects of global monopoles. Buenos Aires preprint GTCRG-90-4Google Scholar
  60. W A Hiscock, Magnetic Monopoles and evaporating black holes. Phys. Rev. Letts 50 1734–1737 (1982)Google Scholar
  61. W A Hiscock, On black holes in magnetic universes. J. Math. Phys. 22 1828–1833 (1981)Google Scholar
  62. W A Hiscock, Magnetic monopoles and evaporating black holes. Phys. Rev. Lett 50 1734–1737 (1983)Google Scholar
  63. W A Hiscock, Astrophysical bounds on global monopoles.Google Scholar
  64. W A Hiscock, Gravitational particle production in the formation of global monopoles.Google Scholar
  65. P A Horvathy, Bogomolny-type equations in curved space. Proc. 2nd Hungarian Relativity Workshop (Budapest 1987) ed. Z Peres, World ScientificGoogle Scholar
  66. H S Hu, Non existence theorems for Yang-Mills fields and harmonic maps in the Schwarzschild spacetime (I). Lett. Math. Phys. 14 253–262 (1987)Google Scholar
  67. H S Hu and S Y Wu, Non existence theorems for Yang-Mills fields and harmonic maps in the Schwarzschild spacetime (II). Lett Math. Phys. 14 343–351 (1987)Google Scholar
  68. W Israel and K A Khan Collinear paricles and Bondi dipoles in general relativy. Nuovo Cimento 33 331 (1964)Google Scholar
  69. W Kinnersley and M Walker, Uniformly accelerating charged mass in general relativity. Phys. Rev. D2 1359–1370 (1970)Google Scholar
  70. L M Krauss and F Wilczek, Discrete gauge symmetry in continuum theories. Phys Rev Letts 62 1221–1223 (1989)Google Scholar
  71. H P Kunzle and A K M Masood-ul-Alam, Spherically symmetric static SU(2) EinsteinYang-Mills fields. J. Math. Phys. 31 928–935 (1990)Google Scholar
  72. A S Lapedes and M J Perry, Type D Gravitational instantons. Phys. Rev. D24 1478–1483 (1983)Google Scholar
  73. D Lohiya, Stability of Einstein-Yang-Mills Monopoles and Dyons. Ann. Phys. 14 104–115 (1982)Google Scholar
  74. M Magg, Simple proof for Yang-Mills instability. Phys. Letts 74B 246–248 (1978)Google Scholar
  75. E Malec and P Koc, Trapped surfaces in monopole-like Cauchy data of EinsteinYang-Mills-Higgs equations. J. Math. Phys. 31 1791–1795 (1990)Google Scholar
  76. J E Mandula, Classical Yang-Mills potentials. Phys. Rev. D14 3497–3507 (1976)Google Scholar
  77. J E Mandula, Color screening by a Yang-Mills instability. Phys. Letts 67B 175–178 (1977)Google Scholar
  78. J E Mandula, Total Charge Screening. Phys. Lett. 69B 495–498 (1977)Google Scholar
  79. E A Martinez and J W York, Thermodynamics of black holes and cosmic strings. IFP-342 UNC: May 1990Google Scholar
  80. A K M Masood-ul-Alam and Pan Yanglian (Y L Pan) Non Existence theorems for Yang-Mills fields outside a black hole of the Schwarschild spacetime. Lett in Math. Phys. 17 129–139 (1989)Google Scholar
  81. M A Melvin, Pure magnetic and electric geons. Phys. Lett 8 65–67 (1964)Google Scholar
  82. C W Misner, Harmonic maps as models for physical theories. Phys. Rev D18 4510–4524 (1978)Google Scholar
  83. M J Perry, Black holes are coloured. Phys. Letts 71B 234 (1977)Google Scholar
  84. J Preskill and L M Krauss, Local discrete symmetry and quantum-mechanical hair. Nucl. Phys. B34150–100 (1990)Google Scholar
  85. J Preskill Quantum Hair. Caltech preprint CALT-68-1671 (1990)Google Scholar
  86. D Ray, Solutions of coupled Einstein-SO(3) gauge field equations. Phys. Rev. D18 1329–1331 (1978)Google Scholar
  87. P Ruback A New Uniqueness Theorem for Charged Black Holes. Class. and Quant. Grav. 5 L155–L159 (1988)Google Scholar
  88. R F Sawyer, The possibility of a static scalar field in the Schwarzschild geometry. Phys. Rev. D15, 1427–1434 (1977). Erratum Phys. Rev. D16 (1977) 1979Google Scholar
  89. P Sikivie and N Weiss, Screening Solutions to Classical Yang-Mills theory. Phys. Rev. Letts 40 1411–1413 (1978)Google Scholar
  90. N Straumann and Z-H Zhou, Instability of colored black hole solution. Phys. Letts 141B 33–35 (1990)Google Scholar
  91. N Straumann and S-H Shou, Instability of the Bartnik-McKinnon solutions of the Einstein-Yang-Mills equations. Phys. Letts 237 353–356 (1990)Google Scholar
  92. P van Nieuwenhuizen, D Wilkinson and M J Perry, Regular solution of 't Hooft's magnetic monopole in curved space. Phys. Rev. D13 778–784 (1976)Google Scholar
  93. M Y Wang, A solution of coupled Einstein-SO(3) gauge field equations. Phys. Rev. D12 3069–3071 (1975)Google Scholar
  94. M S Volkov and D V Gal'tsov, Non-Abelian Einstein-Yang-Mills black holes. JETP. Letts 50 346–350 (1989)Google Scholar
  95. D V Galt'sov and A A Ershov. Yad. Fiz. 47 560 (1988)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • G. W. Gibbons
    • 1
  1. 1.D.A.M.T.P.University of CambridgeCambridge

Personalised recommendations