Advertisement

Bounds for degrees and number of elements in Gröbner bases

  • Lorenzo Robbiano
Submitted Contributions Bases
Part of the Lecture Notes in Computer Science book series (LNCS, volume 508)

Keywords

Complete Intersection Commutative Algebra Regular Sequence Homogeneous Element Hilbert Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bigatti, A. Caboara, M. Robbiano, L. (1990). On the computation of Hilbert-Poincaré series. Preprint.Google Scholar
  2. Buchberger, B. (1985). Gröbner bases: an algorithmic method in polynomial ideal theory. Recent Trends in Multidimensional Systems Theory. (Bose N.K. Ed.) Reidel.Google Scholar
  3. Carrá, G. Robbiano, L. (1990). On superG-bases. To appear on J. Pure Appl. Algebra.Google Scholar
  4. Elias, J. Robbiano, L. Valla, G. (1989), Number of generators of ideals. Preprint.Google Scholar
  5. Geramita, A. Gregory, D. Roberts, L. (1986)Monomial ideals and points in the projective space. J. Pure Appl. Algebra 40 33–62.Google Scholar
  6. Giovini, A. Niesi, G. (1990)CoCoA: a user-friendly system for Commutative Algebra. To appear in the Proceedings of the DISCO conference (Capri 1990).Google Scholar
  7. Giusti, M. (1984)Some effective problems in polynomial ideal theory. Proceedings of EUROSAM 84 Springer Lecture Notes in Computer Science 174 159–171.Google Scholar
  8. Giusti, M. (1988)Combinatorial dimension theory of algebraic varieties. Computational Aspects of Commutative Algebra. Academic Press.Google Scholar
  9. Kunz, E. (1980)Einführung in die kommutative Algebra und algebraische Geometrie Vieweg Studium Bd 46 Aufbaukurs Mathematik Braunschweig/Wiesbaden.Google Scholar
  10. Lazard, D. (1981)Résolution des systèmes d'équations algébriques. Theoretical Computer Science, 15 77–110.Google Scholar
  11. Lazard, D. (1983)Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. EUROCAL 83 Springer Lecture Notes in Computer Science 162.Google Scholar
  12. Macaulay, F. S. (1927)Some properties of enumeration in the theory of modular systems. Proc. London Math. Soc. 26 531–555.Google Scholar
  13. Matsumura, H. (1970)Commutative Algebra. Benjamin, New York.Google Scholar
  14. Möller, M. Mora, T. (1984)Upper and lower bounds for the degree of Gröbner bases. Proceedings of EUROSAM 84 Springer Lecture Notes in Computer Science 174 172–183.Google Scholar
  15. Möller, M. Mora, T. (1986)New constructive methods in classical ideal theory. J. Algebra 100 138–178.Google Scholar
  16. Robbiano, L. (1983)On normal flatness and some related topics Commutative Algebra: Proceedings of the Trento Conference. Lecture notes in Pure and Applied Mathematics. 84 Marcel Dekker.Google Scholar
  17. Robbiano, L. (1988)Introduction to the theory of Gröbner bases, Queen's Papers in Pure and Applied Mathematics N. 80 Vol V.Google Scholar
  18. Robbiano, L. (1990)Introduction to the theory of Hilbert functions, To appear in Queen's Papers in Pure and Applied Mathematics.Google Scholar
  19. Stanley, R.P. (1978)Hilbert functions of graded algebras, Adv in Math. 28 57–83.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Lorenzo Robbiano
    • 1
  1. 1.Dipartimento di Matematica dell'Universitá di GenovaGenovaItaly

Personalised recommendations