Skip to main content

Global differential geometric methods in elasticity and hydrodynamics

  • Part I Differential Geometric Techniques in Physics
  • Conference paper
  • First Online:
Differential Geometry, Group Representations, and Quantization

Part of the book series: Lecture Notes in Physics ((LNP,volume 379))

Abstract

A formalism in the framework of global analysis and largely based on translational symmetry is used to relate in a one-to-one correspondence force densities of elasticity and constitutive laws. The customary setting of elasticity developed e.g. in [17] is included in our approach. Moreover, a structural viscosity coefficient can be naturally introduced and a dynamical setting based on d'Alembert's principle yields a Navier-Stokes type of equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abraham, J.E. Marsden, T. Ratiu: Manifolds, Tensor Analysis, and Applications (Addison Wesley, Global Analysis, 1983)

    Google Scholar 

  2. M. Berger, B. Gostiaux: Differential Geometry: Manifolds Curves and Surfaces (Graduate Texts in Mathematics 115, Springer-Verlag, New York, Berlin, Heidelberg, 1987)

    Google Scholar 

  3. E. Binz: “On the Notion of the Stress Tensor Associated with IRn-invariant Constitutive Laws Admitting Integral Representations“, Rep. Math. Phys. 87 49–57 (1989)

    Article  Google Scholar 

  4. E. Binz: “Constitutive Laws of Bounded Smoothly Deformable Media”, to appear in Proceedings of the Winter School of the Deutsche Physikalische Gesellschaft, ed. by A.Hirshfeld and J.Debrus (Lecture Notes in Physics, Springer-Verlag, Berlin Heidelberg New York, 1991)

    Google Scholar 

  5. E. Binz: “Symmetry, Constitutive Laws of Bounded Smoothly Deformable Media, and Neumann Problems”, to appear in Symmetries in Science V, ed. by B.Gruber (Plenum Press)

    Google Scholar 

  6. E. Binz, H. Fischer: “On the Manifold of Embeddings of a Closed Manifold”, in Proceedings of the Conference on Differential Geometric Methods in Mathematical Physics, Techn. Universität Clausthal, (1978) (Lecture Notes in Physics 134 310–324 (1981))

    Google Scholar 

  7. E. Binz, G. Schwarz, D. Socolescu: “On a Global Differential Geometric Description of the Motions of Deformable Media”, in Infinite Dimensional Manifolds, Groups, and Algebras, Vol. II, ed. by H.D.Doebner, J.Hennig (1990)

    Google Scholar 

  8. E. Binz, J. Śniatycki, H.Fischer: Geometry of Classical Fields, Mathematics Studies 154 (North-Holland Verlag, Amsterdam, 1988)

    Google Scholar 

  9. A. Frölicher, A. Kriegl: Linear Spaces and Differentiation Theory (John Wiley, Chichester. England, 1988)

    Google Scholar 

  10. W. Greub, S. Halperin, J. Vanstone: Connections, Curvature and Cohomology, Vols. I and II (Acad. Press, New York, 1972-73)

    Google Scholar 

  11. W. Greub: Lineare Algebra I, Graduate Texts in Mathematics, Vol. 23 (Springer-Verlag, Berlin, Heidelberg, New York, 1981)

    Google Scholar 

  12. M. Epstein, R. Segev: “Differentiable Manifolds and the Principle of Virtual Work in Continuum Mechanics”, J. Math. Phys. 21 1243–1245 (1980)

    Article  Google Scholar 

  13. E. Hellinger: “Die allgemeinen Ansätze der Mechanik der Kontinua”, Enzykl. Math. Wiss. 4/4 (1914)

    Google Scholar 

  14. M.W. Hirsch: Differential Topology (Springer GTM, Berlin, 1976)

    Google Scholar 

  15. L. Hörmander: Linear Partial Differential Operations, Grundlehren der mathematischen Wissenschaften. Vol.116 (Springer Verlag, Berlin, Heidelberg, New York, 1976)

    Google Scholar 

  16. F. John: Partial Differential Equations, (Applied Mathematical Science, Vol. 1, 1978)

    Google Scholar 

  17. L.D. Landau, E.M. Lifschitz: Elastizitätstheorie, Lehrbuch der theoretischen Physik, Vol. VII (4. Auflage, Akademie Verlag, Berlin, 1975)

    Google Scholar 

  18. Y. Matsushima: “Vector Bundle Valued Canonic Forms”, Osaka J. Math. 8 309–328 (1971)

    Google Scholar 

  19. R. Montgomery: “Isoholonomic Problems and Some Applications”, Commun. Math. Phys. 128 562–592 (1990)

    Google Scholar 

  20. J. Serrin: Mathematical Principles of Classical Fluid Mechanics, Encyclopedia of Physics, Vol. VIII/1, ed. by C. Truesdell and S.Flügge (Springer-Verlag, Berlin, 1959)

    Google Scholar 

  21. M. Spivak: A Comprehensive Introduction to Differential Geometry, Vol. V (Publish and Perish Inc., Boston Ma.)

    Google Scholar 

  22. C. Truesdell, W. Noll: The Non-Linear Field Theories of Mechanics, Encyclopedia of Physics, Vol. III/3, ed. by C.Truesdell and S.Flügge (Springer-Verlag, Berlin, 1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jö-Dieter Hennig Wolfgang Lücke Jiří Tolar

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Binz, E. (1991). Global differential geometric methods in elasticity and hydrodynamics. In: Hennig, JD., Lücke, W., Tolar, J. (eds) Differential Geometry, Group Representations, and Quantization. Lecture Notes in Physics, vol 379. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53941-7_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-53941-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53941-4

  • Online ISBN: 978-3-540-46473-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics