Skip to main content

Avoiding matrix multiplication

  • Graph Algorithms And Complexity
  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 1990)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 484))

Included in the following conference series:

Abstract

The fastest known algorithms for many problems on graphs use matrix multiplication as a sub-routine. Some examples of problems solved using matrix multiplication are recognition of transitive graphs, computing the transitive closure of a directed acyclic graph, and finding the neighborhood containment matrix of a graph. In this paper, we show how to avoid using matrix multiplication for these problems on special classes of graphs. This leads to efficient algorithms for recognizing chordal comparability graphs and trapezoid graphs, computing the transitive closure of two dimensional partial orders, and a number of other problems.

We gratefully acknowledge the support of the Vanderbilt University Research Council

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Bouchitte, M. Habib, The Calculation of Invariants for Ordered Sets, in Algorithms and Order, Ed. I. Rival, Kluwer, Dordrecht, 231–279, 1989

    Google Scholar 

  2. J.L. Bentley, D. Haken, J.B. Saxe, A General Method for Solving Divide-and-Conquer Recurrences, SIGACT News, 36–44 (1980)

    Google Scholar 

  3. K.S. Booth and G.S. Lueker, Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms, J. Computer System Science 13, 335–379 (1976)

    Google Scholar 

  4. F.R.K. Chung, Diameters of Graphs: Old Problems and New Results, Congressus Numerantium 60, 295–317 (1987)

    Google Scholar 

  5. O. Cogis, On the Ferrers dimension of a digraph, Discrete Math. 38, 47–52 (1982)

    Google Scholar 

  6. D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, Proceedings of the 19th Annual Symposium on the Theory of Computation, 1–6, (1987)

    Google Scholar 

  7. I. Dagan, M. C. Golumbic, R. Y. Pinter, Trapezoid graphs and their coloring, Discrete Applied Math. 21, 35–46 (1988)

    Google Scholar 

  8. B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63, 600–610 (1941)

    Google Scholar 

  9. M.J. Fischer and A.R. Meyer, Boolean Matrix Multiplication and Transitive Closure, Proc. of the 12th Annual IEEE Symposium on Switching and Automata Theory, 129–131 (1971)

    Google Scholar 

  10. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.

    Google Scholar 

  11. L. Goh and D. Rotem, Recognition of Perfect Elimination Bipartite Graphs, Information Processing Letters 15, 179–182 (1982)

    Google Scholar 

  12. A. J. Hoffman, A. W. J. Kolen, M. Sakarovitch, Totally-balanced and greedy matrices, SIAM Journal on Algebraic Discrete Methods 6, 721–730 (1985)

    Google Scholar 

  13. M. Habib, R.H. Möhring, On Some Complexity Properties of N-free Posets and Posets with Bounded Decomposition Diameter, Discrete Mathematics 63, 157–182 (1987)

    Google Scholar 

  14. M. habib and R.H. Möhring, Recognition of Partial Orders with Interval Dimension Two via Transitive Orientation with Side Constraints, preprint

    Google Scholar 

  15. D. Kelly, The 3-irreducible Partially Ordered Sets, Canadian Journal of Mathematics 29, 367–383 (1977)

    Google Scholar 

  16. A. Lubiw, Doubly Lexical Orderings of Matrices, SIAM Journal on Computing 16, 854–879 (1987)

    Google Scholar 

  17. T.-H. Ma, Algorithms on Special Classes of Graphs and Partially Ordered Sets, Ph.D. dissertation, Dept. of Computer Science, Vanderbilt U. (1990)

    Google Scholar 

  18. T.-H. Ma and J.P. Spinrad, Cycle-Free Partial Orders and Chordal Comparability Graphs, in preparation

    Google Scholar 

  19. T.-H. Ma and J.P. Spinrad, Transitive Closure of Restricted Classes of Partial Orders, submitted for publication

    Google Scholar 

  20. T.-H. Ma, J.P. Spinrad, an O(n 2) Algorithm for 2 Chain Graph Cover and Related Problems, in preparation

    Google Scholar 

  21. R. H. Möhring, Computationally tractable classes of ordered sets, in Algorithms and Order, Ed. I. Rival, Reidel, Dordrecht (1988)

    Google Scholar 

  22. J.H. Muller, J. Spinrad, Incremental Modular Decomposition, Journal of the ACM 36, 1–19 (1989)

    Google Scholar 

  23. J.H. Muller, Local Structure in Graph Classes, Ph.D. Thesis, School of Information and Computer Science, Georgia Institute of Technology (1988)

    Google Scholar 

  24. I. Munro, Efficient Determination of the Transitive Closure of a Directed Graph, Information Processing Letters 1, 56–58 (1971)

    Google Scholar 

  25. A. Pnueli, A. Lempel, S. Even, Transitive Orientation fo Graphs and Identification of Permutation Graphs, Canadian Journal of Mathematics 23, 160–175 (1971)

    Google Scholar 

  26. R. Paige, R.E. Tarjan, Three Partition Refinement Algorithms, SIAM Journal on Computing 16, 973–989 (1987)

    Google Scholar 

  27. C. H. Papadimitriou, M. Yannakakis, Scheduling interval-ordered tasks, SIAM J. Comput. 8, 405–409 (1979)

    Google Scholar 

  28. I. Rival, personal communication

    Google Scholar 

  29. D.J. Rose, R.E. Tarjan, G.S. Leuker, Algorithmic Aspects of Vertex Elimination on Graphs, SIAM J. Computing 5, 266–283, 1976

    Google Scholar 

  30. J. Spinrad, J. Valdes, Recognition and Isomorphism of Two Dimensional Partial Orders, 10th Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science 154, Springer, Berlin, (1983), 676–686

    Google Scholar 

  31. J. Spinrad, Two dimensional partial orders, Ph.D. Thesis, Princeton Univ., (1982)

    Google Scholar 

  32. J. Spinrad, On comparability and permutation graphs, SIAM J. Comput. 14 658–670, (1985)

    Google Scholar 

  33. J. Spinrad, Doubly Lexical Ordering of Dense 0–1 matrices, submitted for publication

    Google Scholar 

  34. J. Spinrad, P 4-Trees and the Substitution Decomposition, submitted for publication

    Google Scholar 

  35. J. Spinrad, Circular-Arc Graphs with Clique Cover Number Two, J. Combinatorial Theory Series B 44, 300–306 (1988)

    Google Scholar 

  36. M.M. Syslo, A Labeling Algorithm to Recognize a Line Digraph and Output its Root Graph, Information Processing Letters 15, 241–260 (1982)

    Google Scholar 

  37. W.T. Trotter Jr. and J.I. Moore, Characterization Problems for Graphs, Partially Ordered Sets, Lattices and Families of Sets, Discrete Mathematics 16, 361–381 (1976)

    Google Scholar 

  38. A. Tucker, An Efficient Test for Circular-arc Graphs, SIAM J. Computing 9, 1–24 (1980)

    Google Scholar 

  39. R.E. Tarjan, M. Yannakakis, Simple Linear Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs, SIAM J. of Computing 23, 566–579, 1984

    Google Scholar 

  40. J. Valdes, R.E. Tarjan, E.L. Lawler, The Recognition of Series-Parallel Digraphs, SIAM Journal on Computing 11, 298–314 (1978)

    Google Scholar 

  41. M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Alg. Disc. Meth. 2, 77–79 (1981)

    Google Scholar 

  42. M. Yannakakis, The Complexity of the partial order dimension problem, SIAM J. Alg. Disc. Meth. 3, 351–358 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rolf H. Möhring

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ma, TH., Spinrad, J.P. (1991). Avoiding matrix multiplication. In: Möhring, R.H. (eds) Graph-Theoretic Concepts in Computer Science. WG 1990. Lecture Notes in Computer Science, vol 484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53832-1_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-53832-1_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53832-5

  • Online ISBN: 978-3-540-46310-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics