Skip to main content

Connections between CFT and topology via Knot theory

  • 3. Conformal Field Theory and Related Topics
  • Conference paper
  • First Online:
Differential Geometric Methods in Theoretical Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 375))

Abstract

In this paper we shall discuss some of the isomorphisms established between the approach to conformal field theory on P1 of [TK], and the topological construction of braid group representations of [L 1]. These approaches both lead, in the simplest cases, to the one-variable Jones polynomial invariant of links, but can be generalised to give other invariants. The case of higher spin representations of sl2 is discussed from the point of view of both approaches, and is used to re-interpret the well known connection with cabled links. The structure of the braid group representation obtained is also discussed in both the spin- 1/2 and higher spin cases, and is extended to give a representation of the category of tangles.

The author is a Junior Fellow of the Society of Fellows

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Alexander, ‘A lemma on a system of knotted curves', Proc. Nat. Acad. Sci. USA 9 (1923) p. 93–95.

    Google Scholar 

  2. E. Artin, ‘Theorie der Zöfe'', Abh. Math. Sem. Univ. Hamburg4 (1925) p. 47–72.

    Google Scholar 

  3. M.F. Atiyah, ‘The geometry and physics of knots', Lezioni Lincee Cambridge University Press (1990).

    Google Scholar 

  4. J. Birman, ‘Braids, links and mapping class groups', Ann. Math. Stud. 82 (1974).

    Google Scholar 

  5. A. J. Bracken, M. D. Gould, R. B. Zhang, ‘Quantum group invariants and link polynomials', To appear in Commun. Math. Physics.

    Google Scholar 

  6. A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, ‘Infinite conformal symmetry in two-dimensional quantum field theory', Nuc. Phys. B241 (1984) p. 333–380.

    Google Scholar 

  7. V.G. Ddrinfeld'd, ‘Quantum groups', Proc. International Congress of Mathematicians, Berkeley (1986) p.798–820.

    Google Scholar 

  8. B. L. Feigen, V. V. Schechtman, A. N. Varchenko, ‘On algebraic equations satisfied by correlations in Wess-Zumino-Witten models', Preprint (1990).

    Google Scholar 

  9. P. Freyd, D. Yetter, J. Hoste, W. Lickorish, K. Millet, A. Ocneanu, ‘A new polynomial invariant of knots and links', Bull. A.M.S.12 (1985) p. 239–246.

    Google Scholar 

  10. M. Jimbo, ‘A q-analogue of U(gl(N+ 1)), Hecke algebras and the YangBaxter Equations', Lett. Math. Phys.11 (1986) p. 247–252.

    Google Scholar 

  11. V. F. R. Jones, ‘A polynomial invariant for knots via von Neumann algebras', Bull. A.M.S.12 (1985) p. 103–111.

    Google Scholar 

  12. V. F. R. Jones, ‘Hecke algebra representations of braid groups and link polynomials', Ann. Math.126 (1987) p. 335–388.

    Google Scholar 

  13. T. Kohno, ‘Hecke algebra representations of braid groups and classical Yang-Baxter equations', Adv. Studies in Pure Maths.16 (1988) p. 255–269.

    Google Scholar 

  14. A. N. Kirillov, N. Yu. Reshetikhin, ‘Representations of the algebra U q (sl2), q-orthogonal polynomials and invariants of links', Infinite dimensional Lie algebras and groups World Scientific (1988) p.285–342.

    Google Scholar 

  15. V. G. Knizhnik, A. B. Zamolodchikov, ‘Current algebras and Wess-Zumino models in two-dimensions', Nuc. Phys. B247 (1984) p. 83–103.

    Google Scholar 

  16. R. J. Lawrence, ‘Homology representations of braid groups', D. Phil. Thesis, Oxford (June 1989).

    Google Scholar 

  17. R. J. Lawrence, ‘Homological representations of the Hecke algebra', To appear in Commun. Math. Physics.

    Google Scholar 

  18. R. J. Lawrence, ‘A functorial approach to the one-variable Jones polynomial', Harvard University preprint (1990).

    Google Scholar 

  19. R. J. Lawrence, ‘The homological approach applied to higher representations', Harvard University preprint (1990).

    Google Scholar 

  20. W. B. R. Lickorish, K. C. Millett, ‘A polynomial invariant of oriented links', Topology26 (1987) p. 107–141.

    Google Scholar 

  21. A. A. Markov, ‘Über die freie Aquivalenz geschloßener Zöpfe', Recueil Math. Moscow1 (1935) p. 73–78.

    Google Scholar 

  22. H. R. Morton, P. Strickland, ‘Jones polynomial invariants for knots and satellites', Preprint (1990).

    Google Scholar 

  23. N. YU. Reshetikhin, ‘Quantised universal enveloping algebras, the YangBaxter equation, and invariants of links I, II, LOMI Preprints E-4-87, E-17-87 I, {bdII} (1988).

    Google Scholar 

  24. G. B. Segal, ‘Two-dimensional conformal field theories and modular functors', Proc. IXth Int. Congr. on Mathematical Physics (1989) p.22–37.

    Google Scholar 

  25. V. V. Schechtman, A. N. Varchenko, ‘Integral representations of n-point conformal correlators in the WZW model', Preprint (1989).

    Google Scholar 

  26. V. G. Turaev, ‘The Yang-Baxter equation and invariants of links', Invent. Math.92 (1988) p. 527–553.

    Google Scholar 

  27. A. Tsuchiya, Y. Kanie, ‘Vertex operators in conformal field theory on P1 and monodromy representations of braid groups', Adv. Studies in Pure Math.16 (1988) p. 297–372, Erratum ibid 19 (1990) p.675–682.

    Google Scholar 

  28. H. Wenzl, ‘Hecke algebra representations of type A n and subfactors', Invent. Math.92 (1988) p. 349–383.

    Google Scholar 

  29. E. Witten, ‘Quantum field theory and the Jones polynomia;', Commun. Math. Phys.121 (1989) p. 351–399.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. Bartocci U. Bruzzo R. Cianci

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Lawrence, R.J. (1991). Connections between CFT and topology via Knot theory. In: Bartocci, C., Bruzzo, U., Cianci, R. (eds) Differential Geometric Methods in Theoretical Physics. Lecture Notes in Physics, vol 375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53763-5_62

Download citation

  • DOI: https://doi.org/10.1007/3-540-53763-5_62

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53763-2

  • Online ISBN: 978-3-540-47090-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics