Rearrangement of electronic states of heavy ions passing through solid targets

  • Takeshi Mukoyama
  • Kunihiro Shima
I Other Actual Issues (Hot Topics) I.2 Invited Contributions
Part of the Lecture Notes in Physics book series (LNP, volume 376)


Electron rearrangement of fast heavy ions passing through solid targets has been studied by the Monte Carlo simulation. Starting from the electron configuration of ions in solids, the change in electronic states due to successive radiative and Auger transitions was traced from the time when the ion emerges from the solid surface to the time when it is detected. The calculations were made for 63-MeV Cu ions emerging from carbon target. It is found that the charge increase due to vacancy cascade plays a minor role for the mean charge difference between gases and solids. The origin of the shell effect in the equilibrium charge distribution of ions is discussed.


Charge State Charge Distribution Electron Configuration Solid Target Charge State Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.K. Allison: Rev. Mod. Phys. 30 1137 (1958)Google Scholar
  2. 2.
    H.D. Betz: Rev. Mod. Phys. 44 465 (1972)Google Scholar
  3. 3.
    H.D. Betz: In Methods of Experimental Physics, Vol. 17, ed. by P. Richard (Academic, New York, 1980), pp. 73–148Google Scholar
  4. 4.
    M.A. Kumakhov, F.F. Komarov: Energy Loss and Ion Ranges in Solids (Gordon and Breach, New York, 1981)Google Scholar
  5. 5.
    H.D. Betz: In Applied Atomic Collision Physics, Vol. 4, ed. by S. Datz (Academic, New York, 1983), pp. 1–42Google Scholar
  6. 6.
    N. Bohr, J. Lindhard: Kgl. Danske Vidensk. Selsk. Mat.-Fys. Medd. 28 No. 7 (1954)Google Scholar
  7. 7.
    H.D. Betz, L. Grodzin: Phys. Rev. Lett. 25 211 (1970)Google Scholar
  8. 8.
    T. Mukoyama: Bull. Inst. Chem. Res., Kyoto Univ. 63 373 (1985)Google Scholar
  9. 9.
    T. Mukoyama: J. Phys. Soc. Japan 55 3054 (1986)Google Scholar
  10. 10.
    T. Mukoyama, T. Tonuma, A. Yagishita, H. Shibata, T. Koizumi, T. Matsuo, K. Shima, H. Tawara: J. Phys. B 20 4453 (1987)Google Scholar
  11. 11.
    S.T. Manson, D.J. Kennedy: At. Data Nucl. Data Tables 14 111 (1975)Google Scholar
  12. 12.
    V.O. Kostroun, M.H. Chen, B. Crasemann: Phys. Rev. A 3 533 (1971)Google Scholar
  13. 13.
    E.J. McGuire: Phys. Rev. A 3 1801 (1971)Google Scholar
  14. 14.
    E.J. McGuire: Phys. Rev. A 5 1043 (1972)Google Scholar
  15. 15.
    F.P. Larkins: J. Phys. B 4 L29 (1971)Google Scholar
  16. 16.
    H.D. Betz: Nucl. Instr. Meth. 132 19 (1976)Google Scholar
  17. 17.
    K. Shima, S. Fujioka, Y. Tajima, T. Ishihara, M. Yamanouchi: Nucl. Instr. Meth. A262 132 (1987)Google Scholar
  18. 18.
    C.D. Moak, H.O. Lutz, L.B. Bridwell, L.C. Northcliffe, S. Datz: Phys. Rev. Lett. 18 41 (1967)Google Scholar
  19. 19.
    K. Shima, N. Kuno, M. Yamanouchi: Phys. Rev. A 40 3557 (1989)Google Scholar
  20. 20.
    K. Shima, T. Mukoyama: To be published.Google Scholar
  21. 21.
    R.A. Baragiola, P. Ziem, N. Stolterfoht: J. Phys. B 9 L447 (1973)Google Scholar
  22. 22.
    W.N. Lennard, D. Phillips: Phys. Rev. Lett. 45 176 (1980)Google Scholar
  23. 23.
    S. Della-Negra, Y. Le Beyec, B. Monart, K. Standing, K. Wien: Phys. Rev. Lett. 58 17 (1987)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Takeshi Mukoyama
    • 1
  • Kunihiro Shima
    • 2
  1. 1.Institute for Chemical ResearchKyoto UniversityKyotoJapan
  2. 2.Accelerator CenterUniversity of TsukubaIbarakiJapan

Personalised recommendations