Advertisement

Influence of rotating electron wave functions on l-shell ionization and alignment

  • I. C. Legrand
  • R. Dörner
  • H. Schmidt-Böcking
  • V. Zoran
H Alignment in Atomic Collisions; Laser Assisted Collision Processes H.1 Invited Surveys
Part of the Lecture Notes in Physics book series (LNP, volume 376)

Abstract

In adiabatic ion-atom collisions, the target electron distribution will follow the rotation of the internuclear axis resulting in a change of the subshell ionization probabilities as well as of the alignment tensor as compared with the case of frozen electron wave functions. In the present work we compare SCA calculations based on frozen and rotating relativistic electron wave functions with experimental l-subshell probabilities and l3-subshell differential alignment measured by Dörner et al. for 1 MeV protons on Samarium. In this case, where the intrashell couplings play a minor role, the agreement between calculations and experiment is significantly improved assuming a partial rotation of the target electron distribution during the collision, possibly depending on substate and impact parameter.

Keywords

Impact Parameter Ionization Probability Electron Wave Function Alignment Tensor Collision System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Hansteen, Advances in Atomic and Molecular Physics (edited by D.R. Bates and B. Benson) Vol. 11, p. 299 Academic Press, New York (1975) and Google Scholar
  2. 1a.
    L. Kochbach, J.M. Hansteen, R. Gundersen Nucl. Instr. Meth. 169 (1980) 281Google Scholar
  3. 2.
    H. Paul, Proc. 2nd Workshop on Inner Shell Ionization by Light Ions (Linz) 1981, Nucl. Instr. Meth. 162 (1982) 1Google Scholar
  4. 3.
    W. Jitschin, R. Hippler, R. Shanker, H. Kleinpoppen, R. Schuch, H.O. Lutz, J. Phys. B16 (1980) 1417Google Scholar
  5. 4.
    K. Blum, Density Matrix Theorie and Applications, Plenum Press, New York (1981)Google Scholar
  6. 5.
    W. Jitschin, A. Kaschuba, H. Kleinpoppen, H.O. Lutz Z. Phys. A304 (1982) 69Google Scholar
  7. 6.
    J. Konrad, R. Schuch, R. Hoffmann, H. Schmidt-Böcking Phys. Rev. Lett. 52 (1984) 188Google Scholar
  8. 7.
    S. Zehendner, G.B. Baptista, R. Dörner, E. Justiniano, J. Konrad, H. Schmidt-Böcking, R. Schuch Z. Phys. D4 (1987) 243Google Scholar
  9. 8.
    R. Dörner, Thesis, University of Frankfurt (unpublished) and R. Dörner et al. to be publishedGoogle Scholar
  10. 9.
    J. Pàlinkas, L. Sarkadi, B. Schlenk, I. Török, Gy. Kalman, C. Bauer, K. Brankoff, D. Grambole, C. Heiser, W. Rudolph, H.J. Thomas, IEEE Trans. Nucl. Sci., Vol. NS-30, 970, 1983Google Scholar
  11. 10.
    J. Pàlinkas, L. Sarkadi, B. Schlenk, I. Török, Gy. Kalman, C. Bauer, K. Brankoff, D. Grambole, C. Heiser, W. Rudolph, H.J. Thomas; J. Phys. B17 (1983) 131Google Scholar
  12. 11.
    P.A. Amundsen, D.H. Jakubassa-Amundsen, J.Phys. B21 (1988) L99Google Scholar
  13. 12.
    I.C. Legrand et al., to be publishedGoogle Scholar
  14. 13.
    M.E. Rose, Relativistic Electron Theory, John Wiley 1961Google Scholar
  15. 14.
    J.P. Hansen, L. Kocbach, A. Dubois, S.E. Nielsen Phys. Rev. Lett. 64 (1989) 2491Google Scholar
  16. 15.
    A. Berinde, V.E. Iacob, I.C. Legrand, I. Piticu, V. Zoran J. Phys. B18 (1985) L229Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • I. C. Legrand
    • 1
  • R. Dörner
    • 2
  • H. Schmidt-Böcking
    • 2
  • V. Zoran
    • 1
  1. 1.Institute of Atomic PhysicsBucharestRomania
  2. 2.Institut für KernphysikUniversität Frankfurt/MainGermany

Personalised recommendations