Advertisement

Collisions and half collisons in strong electromagnetic fields

  • Teijo Åberg
H Alignment in Atomic Collions; Laser Assisted Collision Processes H.1 Invited Surveys
Part of the Lecture Notes in Physics book series (LNP, volume 376)

Abstract

The theory of laser-assisted (half)collisions is discussed with emphasis on the relationship between multiphoton ionization and electron capture processes.

Keywords

Laser Field Multiphoton Ionization Photon Field Strong Electromagnetic Field Electron Capture Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L Rosenberg, Adv. At. Mol. Phys. 18, 1 (1982).Google Scholar
  2. 2.
    M H Mittleman, Introduction to the Theory of Laser-Atom Interactions (Plenum, New York 1982).Google Scholar
  3. 3.
    F H M Faisal, Theory of Multiphoton Processes (Plenum, New York 1987).Google Scholar
  4. 4.
    P Francken and C J Joachain, J. Opt. Soc. Am. B 7, 554 (1990).Google Scholar
  5. 5.
    P H Bucksbaum, M Bashkansky, and T J McIlrath, Phys. Rev. Lett 58, 349 (1987).Google Scholar
  6. 6.
    N M Kroll and K M Watson, Phys. Rev. A 8, 804 (1973).Google Scholar
  7. 7.
    P S Kristic and D B Milosevic, J. Phys. B 20, 3487 (1987).Google Scholar
  8. 8.
    S Geltman and A Maquet, J. Phys. B 22, L419 (1989); see also B N Chichkov, J. Phys. B 23, L333 (1990).Google Scholar
  9. 9.
    A Weingartshofer, J K Holmes, J. Sabbagh, and S L Chin, J. Phys. B 16, 1805 (1983); see also Ref. 4.Google Scholar
  10. 10.
    B Wallbank, J K Holmes, and A fWeingartshofer, J. Phys. B 22, L615 (1989).Google Scholar
  11. 11.
    P H Bucksbaum in Atomic Physics 11, eds. S Haroche, J C Gay, and G Grynberg (World Science, Singapore 1989) p. 311.Google Scholar
  12. 12.
    P Agostini, F Fabre, G Mainfray, G Petite and K N Rahman, Phys. Rev. Lett. 42, 1127 (1979); P Kruit, J Kimman, and M J Van der Wiel J. Phys. B 14, L597 (1981); see also Ref. 11 and M H Mittleman in The Physics of Electronic and Atomic Collisions, eds. A Dalgamo, R S Freund, P M Koch, M S Lubell, and T B Lucarto, AIP Conf. Proc. 205 (AIP, New York 1990), p. 184.Google Scholar
  13. 13.
    A L Huillier, L A Lompré, G Mainfray, and C Manus, Phys. Rev Lett 48, 1814 (1982); see M Crance, Phys. Rep 144, 117 (1987) for a review.Google Scholar
  14. 14.
    X Mu, Phys. Rev. A 42, 2944 (1990).Google Scholar
  15. 15.
    J Kupersztych, Phys. Scr. 42, 51 (1990).Google Scholar
  16. 16.
    L Pan, K T Taylor, and C W Clark, Phys. Rev. Lett 61, 2673 (1988).Google Scholar
  17. 17.
    H R Reiss in Atoms in Strong Fields, ed. C A Nicolaides, C W Clark, and M H Nayfen (Plenum, New York 1990) p. 425.Google Scholar
  18. 18.
    H Mittleman in Ref. 12.Google Scholar
  19. 19.
    J S Briggs, Rep. Progr. Phys. 39, 217 (1976).Google Scholar
  20. 20.
    M L Goldberger and K M Watson, Collision Theory (Wiley, New York 1964).Google Scholar
  21. 21.
    See e.g. Semiclassical descriptions of atomic and nuclear collisions, eds. J Bang and J de Boer (North-Holland, Amsterdam 1985).Google Scholar
  22. 22.
    T Åberg, D S Guo, J. Ruscheinski, and B Crasemann, to be published.Google Scholar
  23. 23.
    D S Guo, T Åberg, and B Crasemann, Phys. Rev. A 40, 4997 (1989).Google Scholar
  24. 24.
    K. Taulbjerg, R O Barrachina, and J H Macek, Phys. Rev. A 41, 207 (1990); K. Taulbjerg, Phys. Scr. 42, 205 (1990).Google Scholar
  25. 25.
    H R Reiss, Phys. Rev. A 42, 1476 (1990).Google Scholar
  26. 26.
    L V Keldysh, Zh. Eksp. Teor. Fiz. 47, 1965 (1964) [Sov. Phys.-JET? 20, 1307 (1965)].Google Scholar
  27. 27.
    F H M Faisal, J. Phys. B 6, L89 (1973).Google Scholar
  28. 28.
    H R Reiss, Phys. Rev. A 22, 1786 (1980).Google Scholar
  29. 29.
    E J Williams, Kgl. Dan. Vid. Selsk. Mat. Fys. Medd. 13, No. 4 (1935).Google Scholar
  30. 30.
    E L Duman, L I Men'shikov, and B M Smimov, Zh. Exsp. Teor. Fiz. 76, 516 (1979) [Sov. Phys.-JETP 49, 260 (1979)].Google Scholar
  31. 31.
    R G Rolfes and K B MacAdam, J. Phys. B 15, 4591 (1982); K B MacAdam, L G Gray, and R G Rolfes, to be published.Google Scholar
  32. 32.
    T Åberg, A Blomberg, and K B MacAdam, J. Phys. B 20, 4795 (1987).Google Scholar
  33. 33.
    T Åberg, A. Blomberg, J. Tulkki, and O Goscinski, Phys. Rev. Lett. 52, 1207 (1984).Google Scholar
  34. 34.
    K Codling, L J Frasinski, and P A Hatherly, J. Phys. B 22, L321 (1989).Google Scholar
  35. 35.
    S. August, D. Strickland, D D Meyerhofer, S L Chin, and J H Eberly, Phys. Rev. Lett. 63, 2212 (1989); see also R Shakeshaft, R M Potvliege, M Dörr, and W E Cooke, Phys. Rev. A 42, 1656 (1990).Google Scholar
  36. 36.
    T P Grozdanov and R K Janev, Phys. Rev. A 17, 880 (1978).Google Scholar
  37. 37.
    A Bárány, G Astner, H Cederquist, H Danared, S. Huldt, P. Hvelplund, A Johnson, H Knudsen, L Liljeby, and K-G Rensfelt, Nucl. Instrum. Meth. B 9, 397 (1985).Google Scholar
  38. 38.
    A Niehaus, J. Phys. B 19, 2925 (1986).Google Scholar
  39. 39.
    Q Su, J H Eberly, and J Javanainen, Phys. Rev. Lett. 64, 862 (1990).Google Scholar
  40. 40.
    M Pont, N R Walet, and M Gavrila, Phys. Rev. A 41,477 (1990); see also M Gavrila in Atoms in Unusual Situations, ed. J-P Briand (Plenum, New York 1986), p. 225.Google Scholar
  41. 41.
    J S Briggs in Ref. 21, p. 183.Google Scholar
  42. 42.
    R R Freeman, P B Bucksbaum, H Milchberg, S Darack, D Schumacher, and M E Geusic, Phys. Rev. Lett. 59, 1092 (1987); P. Agostini, P Breger, A L'Huillier, H G Muller, G Petite, A Antonetti,and A Migus, Phys. Rev. Lett. 63, 2208 (1989).Google Scholar
  43. 43.
    V C Reed and K. Burnett, Phys. Rev. A 42, 3152 (1990).Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Teijo Åberg
    • 1
  1. 1.Laboratory of PhysicsHelsinki University of TechnologyEspooFinland

Personalised recommendations