Multielectron processes

  • J. Ullrich
  • R. Dörner
  • H. Schmidt-Böcking
G Multi-Electron Process G.2 Invited Contributions
Part of the Lecture Notes in Physics book series (LNP, volume 376)


Recoil-ion momentum spectroscopy (RIMS) has been applied to obtain differential single and multiple ionisation cross sections in energetic, ion-atom collisions. Investigating various collision systems, different aspects of the multiple ionisation reaction have been elucidated: The ionisation collision dynamics, the role of many-body interactions, has been explored for single ionisation of He by 0.3 and 0.5 MeV proton impact measuring the transverse momentum of the recoil-ion in coincidence with that of the projectile; deviations from two-body kinematics have been observed. For the 1.4 MeV/u U32+ on Ne collision system multiple ionisation coincident with single electron capture of the projectile has been measured in dependence of the recoil-ion transverse momentum. In a third experiment, 1.4 MeV/u U32+ on Ar, the contribution of autoionisation processes to the production of Ar6+ ions is investigated: Part of the Ar6+ ions were found to be produced with recoil-ion momenta typical for Arsr5+ production.


Transverse Momentum Impact Parameter Multiple Ionisation Collision System Single Electron Capture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C.L. Cocke, Phys. Rev. A20, 749 (1979)Google Scholar
  2. [2]
    S. Kelbch, J. Ullrich, R. Mann, P. Richard, and H. Schmidt-Böcking, J. Phys. B18, 3423 (1985)Google Scholar
  3. [3]
    A. Müller, B. Schuch, W. Groh, E. Salzborn, H.F. Beyer, P.H. Mokler, and R.E. Olson, Phys. Rev. A33, 3010 (1986)Google Scholar
  4. [4]
    T.J. Gray, C.L. Cocke, and E. Justiniano, Phys. Rev. A22, 849 (1986)Google Scholar
  5. [5]
    H. Tawara, T. Tonuma, H. Kumagai, T. Matsuo, Phys. Rev. A41, 116 (1990)Google Scholar
  6. [6]
    R. Schuch, H. Schöne, P.D. Miller, H.F. Krause, P.F. Dittner, S. Datz, and R.E. Olson, Phys. Rev. Lett. 60, 925 (1988)Google Scholar
  7. [7]
    S. Kelbch, C.L. Cocke, S. Hagmann, M. Horbatsch, C. Kelbch, R. Koch, H. Schmidt-Böcking, and J. Ullrich, J. Phys. B22, 1277 (1989)Google Scholar
  8. [8]
    E.Y. Kamber, C.L. Cocke, S. Cheng, S.L. Varghese, Phys. Rev. Lett. 60, 2026 (1989)Google Scholar
  9. [9]
    J. Ullrich, H. Schmidt-Böcking, and C. Kelbch, Nucl. Instr. Meth. A268, 216 (1988)Google Scholar
  10. [10]
    J. Ullrich, M.Horbatsch, V. Dangendorf, S. Kelbch, and H. Schmidt-Böcking, J. Phys. B21, 611 (1988)Google Scholar
  11. [11]
    R. Dörner, J. Ullrich, H. Schmidt-Böcking, and R.E. Olson, Phys. Rev. Lett. 63, 147 (1989)Google Scholar
  12. [12]
    J. Ullrich et al., to be published in Nucl. Inst. Meth.Google Scholar
  13. [13]
    R.E. Olson in Electronic and Atomic Collisions, edited by H.B. Gilbody, W.R. Newell, F.H. Read, and A.C.H. Smith (Elsevier Science, New York, 1988), pp. 271–285Google Scholar
  14. [14]
    R. Dörner et al., Proc. of the Vth International Conference on the Physics of Highly-Charged Ions, Gie\en 1990, to be publishedGoogle Scholar
  15. [15]
    A.D. Gonzales, S. Hagmann, T.B. Quinteros, B. Kriissig, H. Schmidt-Böcking, R. Koch, and A. Skutlartz, J. Phys. B23, L303 (1990)Google Scholar
  16. [16]
    A. Müller, B. Schuch, W. Groh, and E. Salzborn, Z. Phys. D7, 251 (1987)Google Scholar
  17. [17]
    J.H. McGuire and L. Weaver, Phys. Rev. A16, 41 (1977)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • J. Ullrich
    • 1
  • R. Dörner
    • 1
  • H. Schmidt-Böcking
    • 1
  1. 1.GSI-DarmstadtIKF FrankfurtGermany

Personalised recommendations