Advertisement

Review of some aspects of multiply ionizing collisions involving heavy ion projectiles

  • C. L. Cocke
G Multi-Electron Processes G.1 Invited Surveys
Part of the Lecture Notes in Physics book series (LNP, volume 376)

Abstract

Multiply ionizing collisions involving highly charged projectiles are intrinsically complex , experimentally because of the large number of final channels into which the collision can go, and theoretically because of the many bodies involved. There appears to be no successful theoretical substitute for following the detailed evolution of each body in the collision. The CTMC calculations are providing new insight into the mechanical workings of the collisions, but do not yet incorporate the effect of the electron-electron potential during the collision. Such calculations reveal what is happening, but leave room, indeed invite, the development of conceptual generalizations and the identification of patterned behavior in the collision.

Keywords

Charge State Transverse Momentum Total Cross Section Charge State Distribution Collision System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Jordan, Mon. Notices Roy. Astron. Soc. 142, 501 (1969).Google Scholar
  2. 2.
    C. Zaidins, Ph.D. thesis, Cal. Tech. (1967).Google Scholar
  3. 3.
    E. Everhart and Q.C. Kessel, Phys. Rev. Lett. 14, 247 (1965).Google Scholar
  4. 4.
    Q.C. Kessel and E. Everhart, Phys. Rev. 146, 16 (1966); E. Everhart and Q.C. Kessel, Phys. Rev. 146, 27 (1966).Google Scholar
  5. 5.
    V.V. Afrosimov and N.V. Federenko, Zhur. Tekh. Fiz. 27, 2557 (1957) (JETP 2, Noll, 2378 (1957)).Google Scholar
  6. 6.
    U. Fano and W.L. Lichten, Phys. Rev. Letters 14, 27 (1966).Google Scholar
  7. 7.
    A. Russek and M. Tom Thomas, Phys. Rev. 109, 2015 (1958) and Phys. Rev. 114, 1538 (1959).Google Scholar
  8. 8.
    A. Russek, Phys. Rev. 132, 246 (1963).Google Scholar
  9. 9.
    A. Russek and J. Meli, Physica 46, 222 (1970).Google Scholar
  10. 10.
    J.H. McGuire and O.L. Weaver, Phys. Rev. A 16, 41 (1977).Google Scholar
  11. 11.
    T.J. Gray, C.L. Cocke and E. Justiniano, Phys. Rev. A 22, 849 (1980).Google Scholar
  12. 12.
    S. Kelbch, et al., J. Phys. B 22, 1277 (1989).Google Scholar
  13. 13.
    M. Horbatsch and R.M. Dreizler, Phys. Rev. Lett. A 113, 251 (1985); M. Horbatsch, J. Phys. B19, L193 (1986); Z. Phys. D1, 337 (1986); Z. Phys. D2, 183 (1986).Google Scholar
  14. 14.
    Groh et al. J. Phys. B 15, L207 (1982); J. Phys. B16, 1997 (1983); Phys. Lett. 85A, 77 (1981).Google Scholar
  15. 15.
    A. Müller, W. Groh and E. Salzborn, Phys. Rev. Lett. 51, 107 (1983).Google Scholar
  16. 16.
    T. Åberg, et al., Phys. Rev. Lett. 52, 1207 (1984).Google Scholar
  17. 17.
    H. Schmidt-Bocking, et al., Phys. Rev. A37, 4640 (1988).Google Scholar
  18. 18.
    R. Schuch, et al., Phys. Rev. Lett. 60, 925 (1988); H. Schöne, et al., Nucl. Inst. Meth. B40/41, 141 (1989).Google Scholar
  19. 19.
    J.C. Levin et al., Phys. Rev. A 36, 1649 (1987); J.C. Levin, et al., Nucl. Inst. Meth. A262, 106 (1987).Google Scholar
  20. 20.
    J. Ullrich et al., J. de Physique C1, 29 (1989).Google Scholar
  21. 21.
    R.E. Olson, J. Ullrich and H. Schmidt-Bocking, Phys. Rev. A 39, 5572 (1989).Google Scholar
  22. 22.
    C.E.G. Lepera, et al., Nucl. Inst. Meth. B 24/25, 316 (1987).Google Scholar
  23. 23.
    A.D. González, S. Hagmann, T.B. Quinteros and B. Krdssig, to appear (1990).Google Scholar
  24. 24.
    V. Frohne, et al. private communication (1990).Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • C. L. Cocke
    • 1
  1. 1.J. R. Macdonald Laboratory, Physics DepartmentManhattanUSA

Personalised recommendations