Advertisement

Evidence for resonant double electron capture and single excitation in Ge31+ → Ne collisions

  • Th. Stöhlker
  • C. Kozhuharov
  • E. A. Livingston
  • P. H. Mokler
  • Z. Stachura
  • A. Szymanski
  • A. Warczak
C Double Electron and Resonance Processes C.2 Invited Contributions
Part of the Lecture Notes in Physics book series (LNP, volume 376)

Abstract

Evidence for resonant two-electron capture and excitation, i.e. the time-reversed double-Auger process with radiative stabilization, was found in collisions between hydrogenic 32Ge31+ projectiles and Ne gas atoms. The multiply excited projectile states produced in the collision decay via x-ray cascades. The measurement of coincidences between two-projectile K-x rays associated with double electron capture at collision energies between 4.5 MeV/u and 11.5 MeV/u provides us with its excitation function for this resonant process which shows a strong enhancement at beam energies below 7.5 MeV/u in accordance with the expected resonance location. The cross sections found for this process are surprisingly large compared to the measured cross sections for resonant single-electron capture and excitation in Ge31+ → H2 collisions. Considering also the non-correlated two-electron capture and excitation process we estimate for the resonant region a contribution of the non-resonant process to be about ⅓ of the measured cross section.

Keywords

Excitation Function Triple Coincidence Double Electron Capture High Energy Regime Projectile Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.A. Tanis, E.M. Bernstein, W.G. Graham, M. Clark, S.M. Shafroth B.M. Johnson, K.W. Jones, M. Meron, Phys. Rev. Lett. 49 (1982) 1325.Google Scholar
  2. [2]
    J.A. Tanis, Nucl. Instr. Methods A 262 (1987) 52.Google Scholar
  3. [3]
    W.G. Graham, K.H. Berkner, E.M. Bernstein, M.W. Clark, B. Feinberg, M.A. McMahan, T.J. Morgan, W. Rathbun, A.S. Schlachter and J.A. Tanis, submitted to Phys. Rev. Lett.Google Scholar
  4. [4]
    P.H. Mokler, Th. Stöhlker, Ch. Kozhuharov, J. Ullrich, S. Reusch, Z. Stachura, A. Warczak, A. Müller, R. Schuch, E.A. Livingston, M. Schulz, Y. Awaya, T. Kambara, invited paper to X-90 (Conference on X-Ray and Inner Shell Processes, Knoxville, 1990)Google Scholar
  5. [5]
    A. Warczak, Z. Stachura, A. Syzmanski, Th. Stöhlker, Ch. Kozhuharov, A.E. Livingston, P.H. Mokleii, S. Reusch, Phys. Lett. A 146 (1990) 122.Google Scholar
  6. [6]
    P.H. Mokler, D.H.H. Hoffmann, W.A. Schönfeldt, D. Maor, W.E. Meyerhof, Z. Stachura, Nucl. Instr. Meth. (B4) (1984) 34Google Scholar
  7. [7]
    F. Biggs, L.B. Mendelsohn and J.B. Mann, ADANDT 3 (1975) 201.Google Scholar
  8. [8]
    M. Clark, D. Brandt, J.K. Swenson and S.M. Shafroth, Phys. Rev. Lett. 54 (1985) 544.Google Scholar
  9. [9]
    J. van den Bos, F.J. de Heer, Physika 34 (1967) 333.Google Scholar
  10. [10]
    R.E. Olson in Electronic and Atomic Collisions, edited by H.B. Gilbody, W.R. Newell, F.H. Read, and A.C.H. Smith (Elsevier Science, New York, 1988), pp. 271–285Google Scholar
  11. [11]
    Th. Stöhlker, Ch. Kozhuharov, E.A. Livingston, P.H. Mokler, R.E. Olson, A. Szymanski, Z. Stachura, A. Warczak, scientific report 1989, GSI90-1 (ISSN0174-0814 1990) 135.Google Scholar
  12. [12]
    T. Aberg, in: Atomic inner-shell processes, Vol.1, ed. B. Crasemann (Academic Press, New York, 1975) p.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Th. Stöhlker
    • 1
  • C. Kozhuharov
    • 2
  • E. A. Livingston
    • 2
  • P. H. Mokler
    • 1
  • Z. Stachura
    • 3
  • A. Szymanski
    • 3
  • A. Warczak
    • 3
  1. 1.GSI-Darmstadt and University GießenGermany
  2. 2.Notre Dame UniversityINUSA
  3. 3.University and Inst. of Nuclear PhysicsKrakowPoland

Personalised recommendations