Skip to main content

A study of spurious asymptotic numerical solutions of nonlinear differential equations by the nonlinear dynamics approach

  • Contributed Paper Sessions
  • Conference paper
  • First Online:
Twelfth International Conference on Numerical Methods in Fluid Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 371))

Abstract

The goal of this paper is to present some new results and to give insight and guidelines on the application of nonlinear dynamics theory to the better understanding of asymptotic numerical solutions and nonlinear instability in finite difference methods for nonlinear differential equations that display genuinely nonlinear behavior. Our hope is to reach researchers in the fields of computational sciences and, in particular, computational fluid dynamics (CFD). Although the study of nonlinear dynamics and chaotic dynamics for nonlinear differential equations and for nonlinear discrete maps (nonlinear difference equations) have independently flourished for the last decade, there are very few investigators addressing the issue on the connection between the nonlinear dynamical behavior of the continuous systems and the corresponding nonlinear discrete map resulting from finite-difference discretizations. This issue is especially vital for computational sciences since nonlinear differential equations in applied sciences can rarely be solved in closed form and it is often necessary to replace them by finite dimensional nonlinear discrete maps. It is important to realize that these nonlinear discrete maps can exhibit a much richer range of dynamical behavior than their continuum counterparts. Furthermore, it is important to ask what happens when linear stability in numerical integrations breaks down for problems with genuinely nonlinear behavior. Here our objective is neither to provide theory nor to illustrate with realistic examples the connection of the dynamical behavior of practical fluid dynamics equations with their discretized counterparts, but rather to give insight into the nonlinear features unconventional to this type of study and to concentrate on the fundamental ideas.

Staff Scientist, Fluid Dynamics Division.

Lecturer, Department of Mathematics.

Senior Lecturer, Department of Mathematical Sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. NASA Computational Fluid Dynamics Conference, NASA Conference Publication 10038, Vol. 1 and 2, March 7–9, 1989.

    Google Scholar 

  2. R.L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison Wesley, New York, 1987.

    Google Scholar 

  3. R.Seydel, From Equilibrium to Chaos, Elsevier, New York, 1988.

    Google Scholar 

  4. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.

    Google Scholar 

  5. J.M.T. Thompson and H.B. Stewart, Nonlinear Dynamics and Chaos, John Wiley, New York, 1986.

    Google Scholar 

  6. C.S. Hsu, Cell-to-Cell Mapping, Springer-Verlag, New York, 1987.

    Google Scholar 

  7. M. Kubicek and M. Marek, Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, 1983.

    Google Scholar 

  8. T.S. Parker and L.O. Chua, Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, New York, 1989.

    Google Scholar 

  9. E. A. Jackson, Perspectives of Nonlinear Dynamics, Cambridge, Cambridge, 1989.

    Google Scholar 

  10. E. Beltrami, Mathematics for Dynamic Modeling, Academic Press, Orlando, 1987.

    Google Scholar 

  11. R.M. May, J. Theoret. Biol., Vol. 51, 1975, pp. 511–524.

    Google Scholar 

  12. H.C. Yee, Ph.D. Dissertation, University of Calif., Berkeley, Calif., USA, 1975.

    Google Scholar 

  13. C.S. Hsu, Advances in Applied Mechanics, Academic Press, New York, Vol. 17, 1977, pp. 245–301.

    Google Scholar 

  14. A.M. Panov, Uch. Zap. Ural. Gos. Univ. vyp, Vol. 19, 1956, pp. 89–99.

    Google Scholar 

  15. O. Perron, J. Reine Angew. Math. Vol. 161, 1929, pp. 41–64.

    Google Scholar 

  16. C.S. Hsu, H.C. Yee and W.H. Cheng, J. Appl. Mech., Vol. 44, pp., 1977, pp. 147–153.

    Google Scholar 

  17. C.S. Hsu, H.C. Yee and W.H. Cheng, J. Sound Vib., Vol. 50, 1977, pp. 95–116.

    Google Scholar 

  18. R.M. May, Nature, Vol. 261, 1976, pp. 459–467.

    Google Scholar 

  19. R.M. May, Science, Vol. 186, No. 15, 1974, pp. 645–647.

    Google Scholar 

  20. T.Y. Li and J.A. Yorke, Am. Math. Monthly, Vol. 82, 1975, pp. 985–992.

    Google Scholar 

  21. E.N. Lorenz, Tellus, Vol. 16, 1964, pp. 1–11.

    Google Scholar 

  22. M.J. Feigenbaum, J. Stat. Phys., Vol. 19, 1978, pp. 25–52.

    Google Scholar 

  23. C.S. Hsu and H.C. Yee, J. Appl. Mech., Vol. 44, 1975, pp. 870–876.

    Google Scholar 

  24. S. Ushiki, Physica 4D, 1982, pp. 407–424.

    Google Scholar 

  25. F. Brezzi, S. Ushike and H. Fujii, Numerical Methods for Bifurcation Problems, T. Kupper, H.D. Mittleman and H. Weber eds., Birkhauser-Verlag, Boston, 1984.

    Google Scholar 

  26. R. Schreiber and H.B. Keller, J. Comput. Phys., Vol. 49, No. 1, 1983.

    Google Scholar 

  27. W.J. Beyn and E.J. Doedel, SIAM J. Sci. Statist. Comput., Vol. 2, 1981, pp. 107–120.

    Google Scholar 

  28. R.B. Kellogg, G.R. Shubin, and A.B. Stephens, SIAM J. Numer. Anal. Vol. 17, No. 6, 1980, pp. 733–739.

    Google Scholar 

  29. A.B. Stephens and G.R. Shubin, SIAM J. Sci. Statist Comput., Vol. 2, 1981, pp. 404–415.

    Google Scholar 

  30. G.R. Shubin, A.B. Stephens and H.M. Glaz, J. Comput. Phys., Vol. 39, 1981, pp. 364–374.

    Google Scholar 

  31. P.G. Reinhall, T.K. Caughey and D.W. Storti, Trans. of the ASME, J. Appl. Mech., 89-APM-6, 1989.

    Google Scholar 

  32. E.N. Lorenz, Physica D, Vol. 35, 1989, pp. 299–317.

    Google Scholar 

  33. A.J. Lichtenberg and M.A. Lieberman, Regular and Stochastic Motion, Appl. Math. Sci. Bd. 38, Springer-Verlag, New York, 1983.

    Google Scholar 

  34. R.H. Miller, “A Horror Story about Integration Methods,” J. Comput. Phys., to appear.

    Google Scholar 

  35. W.A. Mulder and B. van Leer, AIAA-83-1930, July 1983.

    Google Scholar 

  36. M. Prüffer, SIAM J. Appl. Math. Vol. 45, 1985, pp. 32–69.

    Google Scholar 

  37. W.-J. Beyn, SIAM J. Numer. Anal., Vol. 24, No. 5, 1987, pp. 1095–1113.

    Google Scholar 

  38. H.C. Yee, P.K. Sweby and D.F. Griffiths, “Dynamcal Approach Study of Spurious Steady-State Numerical Solutions for Nonlinear Differential Equations, Part I. The ODE Connection and Its Implications for Algorithm Development in Computational Fluid Dynamics,” submitted to J. Comput. Phys., March 1990, also NASA TM-102820, April 1990.

    Google Scholar 

  39. A.R. Mitchell and D.F. Griffiths, Report NA/88 July 1985, Department of Mathematical Sciences, University of Dundee, Scotland U.K.

    Google Scholar 

  40. A.R. Mitchell and J.C. Bruch, Jr., Numerical Methods for PDEs, Vol. 1, 1985, pp. 13–23.

    Google Scholar 

  41. A.R. Mitchell, P. John-Charles and B.D. Sleeman, Numerical Analysis Report 93, May 1986, Department of Mathematical Sciences, University of Dundee, Scotland.

    Google Scholar 

  42. V.S. Manoranjan, A.R. Mitchell, and B.D. Sleeman, J. Comput. App. Math., Vol. 11, 1984, pp. 27–37.

    Google Scholar 

  43. B.D. Sleeman, D.F. Griffiths, A.R. Mitchell and P.D. Smith, SIAM J. Sci. Stat. Comput., Vol. 9, No. 3, May 1988, pp. 543–557.

    Google Scholar 

  44. D.F. Griffiths and A.R. Mitchell, Report NA/113, Jan. 1988, Dept. Math. and Compt. Science, University of Dundee, Scotland.

    Google Scholar 

  45. A.R. Mitchell, G. Stein and M. Maritz, Comm. Appl. Num. Meth., Vol. 4, 1988, pp. 263–272.

    Google Scholar 

  46. D.F. Griffiths and A.R. Mitchell, Inst. Math. Applics., J. Num. Analy., Vol. 8, 1988, pp. 435–454.

    Google Scholar 

  47. A.R. Mitchell and S.W. Schoombie, J. Comp. Appl. Math., Vol 25, 1989, pp. 363–372.

    Google Scholar 

  48. J.M. Sanz-Serna and F. Vadillo, Proceedings Dundee, 1985, G.A. Watson and D.F. Griffiths, eds., Pitman, London.

    Google Scholar 

  49. A. Iserles, International Conference on Numerical Mathematics, Singapore, R.P. Agarwal, ed., Birkhauser, Basel, 1989.

    Google Scholar 

  50. A. Iserles and J.M. Sanz-Serna, “Equilibria of Runge-Kutta Methods,” Numerical Analysis Reports, DAMTP 1989/NA4, Univeristy of Cambridge, England, May 1989.

    Google Scholar 

  51. A. Iserles, A.T. Peplow and A.M. Stuart, “A Unified Approach to Spurious Solutions Introduced by Time Discretisation, Part 1: Basic Theory,” DAMTP 1990/NA4, Numerical Analysis Reports, University of Cambridge, March 1990.

    Google Scholar 

  52. A.M. Stuart, IMA J. Num. Anal., Vol. 9, 1989, pp. 465–486.

    Google Scholar 

  53. A. Stuart, “The Global Attractor Under Discretisation,” to appear, Proc. NATO Conference on Continuation & Bifurcation, 1989.

    Google Scholar 

  54. A. Stuart and A. Peplow, “The Dynamics of the Theta Method,” to appear, SIAM J. Sci. Stat. Comput.

    Google Scholar 

  55. A. Stuart, SIAM Review, Vol. 31, No. 2, 1989, pp. 191–220.

    Google Scholar 

  56. A. Stuart and M.S. Floater, “On the Computation of Blow-up,” submitted to the European J. Appl. Math., May 1989.

    Google Scholar 

  57. P.K. Sweby, H.C. Yee and D.F. Griffiths, “On Spurious Steady-State Solutions of Explicit Runge-Kutta Schemes,” Numerical Analysis Report 3/90, U. of Reading, March 1990, also NASA TM-102819, April 1990.

    Google Scholar 

  58. C. Grebogi E. Ott and J. Yorke, Science, Vol. 238, 1987, pp. 585–718.

    Google Scholar 

  59. S.W. McDonald, C. Grebogi E. Ott and J. Yorke, Physica 17D, 1985, pp. 125–153.

    Google Scholar 

  60. C. Grebogi E. Ott and J. Yorke, Physics 7D, 1983, pp. 181–200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. W. Morton

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Yee, H.C., Sweby, P.K., Griffiths, D.F. (1990). A study of spurious asymptotic numerical solutions of nonlinear differential equations by the nonlinear dynamics approach. In: Morton, K.W. (eds) Twelfth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol 371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53619-1_180

Download citation

  • DOI: https://doi.org/10.1007/3-540-53619-1_180

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53619-2

  • Online ISBN: 978-3-540-46918-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics