Advertisement

A hierarchy of unary primitive recursive string-functions

  • Lila Santean
Part III Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 464)

Abstract

Using a recent result of G.Asser, an extention of Ackermann-Peter hierarchy of unary primitive recursive functions to string-functions is obtained. The resulting hierarchy classifies the string-functions according to their lexicographical growth.

Keywords

Induction Hypothesis Intermediate Step Monotonicity Property Lexicographical Order Small Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Asser. Rekursive Wortfunktionen Z.Math. Logik Grundlag.Math. 6(1960), 258–278.Google Scholar
  2. [2]
    G. Asser. Primitive recursive word-functions of one variable, in E.Borger (ed.), Computation Theory and Logic, LNCS 270, Springer 1987, 14–19.Google Scholar
  3. [3]
    G. Asser. Zur Robinson Charakterisierung der Einstelligen Primitiv Rekursiven Wortfunktionen, Z.Math.Logik Grundlag.Math., 34(1988), 317–322.Google Scholar
  4. [4]
    C. Calude. Theories of Computational Complexity, North-Holland, Amsterdam, New-York, Oxford, Tokio, 1988.Google Scholar
  5. [5]
    C.Calude, L.Santean. On a Theorem of Gunter Asser, Z.Math.Logik Grundlag.Math., 1990.Google Scholar
  6. [6]
    F.W. v.Henke, K. Indermark, G. Rose, K. Weichrauch. On Primitive Recursive Wordfunctions, Computing 15(1975), 217–234.Google Scholar
  7. [7]
    M.Tatarim. Darboux property and one-argument primitive recursive string-functions, Revue Roumaine des Mathematiques Pures et Appliques, 1987, 79–94.Google Scholar
  8. [8]
    K. Weichrauch. Teilklassen primitiv-rekursiver Wortfunktionen, Berichte der GMD 91(1974), 1–49.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Lila Santean
    • 1
  1. 1.Institute for InformaticsBucharest 1Romania

Personalised recommendations