Seven hard problems in symbolic background knowledge acquisition

  • Yves Kodratoff
Part II Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 464)


By using a special characterization of machine learning algorithms, we first define what is background knowledge, as opposed to case-based, strategic, and explanatory types of knowledge. We oppose also the symbolic to the numeric view of background knowledge. We discuss then what we see as the seven most difficult topics in background knowledge acquisition, namely the detection of implicit implications, first order logic knowledge representation and acquiring "Skolem" functions, uncertain knowledge, weak knowledge, time management and fusion of several sources of knowledge, knowledge for vision, certification of knowledge.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adorni G., Massone L., Sandini G., Immovilli M., "From early processing to conceptual reasoning: An attempt to fill the gap", in Proc. 10th IJCAI, 1987, pp. 775–778.Google Scholar
  2. Asada M., Shirai Y., "Building a world model for a mobile robot using dynamic semantic constraints", in Proc. 11th IJCAI, 1989, pp.1629–1634.Google Scholar
  3. Benzecri J. P. et alii, L'analyse des données, Dunod, Paris, 1973.Google Scholar
  4. Bisson, G., Laublet P., "A Functional Model to Evaluate Learning Systems", in Proc. 4th EWSL, Morik K. (Ed.), Pitman, London 1989, pp. 37–48.Google Scholar
  5. Blythe J., Needham D, McDowell R., Manago M., Rouveirol C., Kodratoff Y., Lesaffre F.-M., Conruyt N., Corsi P. Knowledge Acquisition by Machine Learning: the INSTIL Project, in Esprit'88 Putting the Technology to Use, pp. 769–779, North-Holland, Amsterdam 1988.Google Scholar
  6. Boose, J. H. "A survey of knowledge acquisition techniques and tools", Knowledge Acquisition 1, 1989, pp. 3–37.Google Scholar
  7. Boose, J. H., Shema D.B., Bradsi J M. "Recent progress in AQUINAS: a knowledge acquisition workbench", Knowledge Acquisition 1, 1989, pp. 139–214.Google Scholar
  8. Bratko I., Lavrac N. (Eds) Progress in Machine Learning, Sigma Press, Wilmslow 1987.Google Scholar
  9. Bratko, I., Kodratoff, Y., An analytical report of EWSL-88, AI Communications 2, 1989, pp. 24–27.Google Scholar
  10. Brooks R. A., "Symbolic reasoning among 3-D models and 2-D images", Artificial Intelligence Journal, 17, 1981, pp. 285–348.Google Scholar
  11. Buchanan B.G., Shortliffe E. H. (Eds.) Rule-Base Expert Systems, Addison-Wesley, Reading MA, 1984.Google Scholar
  12. Cannat J. J., Vrain C., "Machine Learning Applied to Air Traffic Control", Proc. Human Machine Interaction, Artificial Intelligence, Aeronautics and Space, Toulouse Sept. 1988, pp. 265–274, CEPAD Toulouse,1988.Google Scholar
  13. Dawant B. M., Jansen B. H., "A coupled expert system for automated signal interpretation," in Pattern Recognition and Artificial Intelligence, Gelsema E.S. and Kanal L.N. (Eds), North-Holland, Amsterdam 1988, pp. 471–481.Google Scholar
  14. DeJong G., Mooney R.: "Explanation Based Learning: An Alternative View", Machine Learning Journal, Vol. 1, Number 2, 1986, pp. 145–176, Kluwer Academic Publishers.Google Scholar
  15. Duval B., Kodratoff Y. "A Tool for the Management of Incomplete Theories: Reasoning about explanations" in Machine Learning, Meta-Reasoning and Logics, P. Brazdil and K. Konolige (Eds.), Kluwer Academic Press, 1990, pp. 135–158.Google Scholar
  16. Feigenbaum E. A. "Expert Systems in the 1980s", in Bond editor, State of the Art Report on Machine Intelligence, Maidenhead: Pergamon-Infotech, 1981.Google Scholar
  17. Ganascia J.-G., Helft N., "Evaluation des Systèmes d'Apprentissage", Actes Journées Françaises sur l'Apprentissage, E. Chouraqui editor, Cassis May 1988, CNRS Marseilles 1988, pp. 3–20.Google Scholar
  18. Ganascia, J.-G., "Improvement and Refinement of the Learning Bias Semantic", Proc. ECAI-88, Y. Kodratoff (Ed), Pitman 1988, pp 384–389Google Scholar
  19. Huertas A., Cole W., Nevatia R., "Using generic knowledge in analysis of aerial scenes: A case study", in Proc. 11th IJCAI, 1989, pp. 1642–1648.Google Scholar
  20. Kodratoff Y. "Characterising Machine Learning Programs: A European Compilation", RR 507 LRI, 1989, reproduced in Artificial Intelligence, Research Directions in Cognitive Science, European Perspectives, Vol. 5, D. Sleeman and N. O. Bernsen (Eds), Lawrence Erlbaum (to appear)Google Scholar
  21. Kodratoff Y. "Faut-il choisir entre science des explications et science des nombres?", in Induction symbolique et numérique à partir de données, Kodratoff Y and Diday E. (Eds), Cepadues Editions, Toulouse 1990 (to appear).Google Scholar
  22. Kodratoff Y. Introduction to Machine Learning, Pitman 1988.Google Scholar
  23. Kodratoff Y., Ganascia J.G., Clavieras B., Bollinger T., Tecuci G., "Careful Generalization for Concept Learning", Proc. ECAI-84, Pisa 1984, pp. 483–492. Also in Advances in Artificial Intelligence, T. O'Shea (ed), pp. 229–238, North-Holland Amsterdam 1985.Google Scholar
  24. Kodratoff Y., Rouveirol C., Tecuci G., and Duval B. "Symbolic approaches to uncertainty", in Intelligent Systems: State of the art and future directions, Ras Z. W. and Zemankova M. (Eds.), Ellis Horwood, 1990 (to appear).Google Scholar
  25. Kodratoff, Y., Manago, M. and Blythe, J., "Generalization and Noise" Int. J. Man-Machine Studies 27, 1987, pp. 181–204. Also in Knowledge Acquisition for Knowledge-Based Systems, Gaines B. and Boose J. (Eds), Academic Press, London 1988, pp. 301–324Google Scholar
  26. Kodratoff, Y., Manago, M., Blythe, J., Smallman, C. and Andro, Th.,: "The Integration of Numeric and Symbolic Techniques in Learning", in ESPRIT 86 Results and Achievements, North-Holland, 1987, pp 313–321.Google Scholar
  27. Kodratoff, Y., Perdrix, H. and Franova, M., "Traitement symbolique du raisonnement incertain", Actes Congrès AFCET Matériels et Logiciels pour la 5ème Génération, Paris, March 1985, pp.33–45.Google Scholar
  28. Kodratoff, Y., Tecuci, G., "Techniques of Design and DISCIPLE Learning Apprentice", International J. of Expert Systems 1, 1, 1987, pp. 39–66.Google Scholar
  29. Manago M., Kodratoff Y.: "Noise and Knowledge Acquisition", Proc. IJCAI-87, Milan Aug. 87, pp. 348–354.Google Scholar
  30. Michalski R. S. "A Theory and a Methodology of Inductive Learning", in Machine Learning: An Artificial Intelligence Approach, R.S. Michalski, J.G. Carbonell, T.M. Mitchell (Eds.), Morgan Kaufmann, Los Altos, 1983, pp 83–134.Google Scholar
  31. Michalski R., "Inductive learning as rule-guided transformation of symbolic descriptions A theory and implementation", in Automatic Program Construction Techniques, Biermann, Guiho and Kodratoff editors, Macmillan Publishing Company 1984, pp. 517–552.Google Scholar
  32. Michalski, R.S., Carbonell, J. G., Mitchell, T. M. (Eds.), Machine Learning: An Artificial Intelligence Approach, Morgan Kaufmann 1983.Google Scholar
  33. Michalski, R.S., Carbonell, J. G., Mitchell, T. M. (Eds.), Machine Learning: An Artificial Intelligence Approach, Volume II, Morgan Kaufmann 1986.Google Scholar
  34. Mitchell T.M., Keller R.M., Kedar-Cabelli S.T.: "Explanation Based Learning: An Unifying View", Machine Learning Journal, Vol. 1, Number 1, 1, 1986, pp. 47–80, Kluwer Academic Publishers.Google Scholar
  35. Morik K. "Sloppy Modeling" in Knowledge Representation and Organization in Machine Learning, Lecture Note in AI 347, Springer-Verlag, Berlin 1989, pp.107–134.Google Scholar
  36. Morik K., Rouveirol C., Sims P.: “Comparative Study of the representation languages used by the systems of the MLT”, rapport ESPRIT D2.1., Nov. 1989.Google Scholar
  37. Perucca G., de Couasnon T., Giorcelli S., Hirsh E., Mangold H., "Advanced algorithms and architecture for speech and image processing", in Esprit'88, Putting the Technology to Use, CEC (Ed.), North Holland 1988, pp. 543–561.Google Scholar
  38. Quinlan J.R., "Learning Efficient Classification Procedures and their Application to Chess End Games" in Machine Learning: An Artificial Intelligence Approach, R.S. Michalski, J.G. Carbonell, T.M. Mitchell (Eds.), Morgan Kaufmann 1983, pp 463–482Google Scholar
  39. Quinlan, J. R. "Learning efficient classification procedures and their application to chess end games," in Machine Learning: An Artificial Intelligence Approach, Michalski R. S., Carbonell J. G., Mitchell T. M. (Eds), Morgan Kaufmann, Los Altos.Google Scholar
  40. Schank R. C. Explanation Patterns: Understanding mechanically and Creatively, Ablex Publishing Company, (1987).Google Scholar
  41. Schank R. C., Abelson R. P., Scripts, Plans, Goals, and Understanding, Lawrence Erlbaum, Hillsdale, N.J. (1977).Google Scholar
  42. Shafer D. A mathematical theory of evidence, Princeton University Press, Princeton NJ, 1976.Google Scholar
  43. Smets C., Verbeek G., Suetens P., Oosterlinck A., "A knowledge-based system for the three-dimensional reconstruction of the cerebral blood vessels from a pair of stereoscopic angiograms", in Pattern Recognition and Artificial Intelligence, Gelsema E.S. and Kanal L.N. (Eds), North-Holland, Amsterdam 1988, pp. 425–435.Google Scholar
  44. Tecuci, G., and Kodratoff, Y., "Apprenticeship Learning in Nonhomogeneous Domain Theories", in Kodratoff Y. and Michalski R. S. (Eds.) Machine Learning: An Artificial Intelligence Approach, Volume 3, Morgan-Kaufmann 1990 (to appear).Google Scholar
  45. Zadeh L. A. The role of fuzzy logic in the management of uncertainty in expert systems, Fuzzy Sets and Systems, 11, 1983, pp. 199–227.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Yves Kodratoff
    • 1
    • 2
  1. 1.CNRS & Université Paris Sud, LRIOrsayFrance
  2. 2.George Mason University, AI CenterVirginiaUSA

Personalised recommendations