Skip to main content

Photoinduced electron transfer in arranged media

  • Conference paper
  • First Online:
Photoinduced Electron Transfer III

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 159))

Abstract

Although the transfer of an electron is an elementary chemical event, its consequence on the reactivity of the reagents involved in the exchange is profound, inverting the normal electron demand of each participant. Photoinduced electron transfer provides a sensitive probe for excited state dynamics and the influence of the environment of the excited molecule on the course of both the primary photoinduced electron exchange and on the all-important thermal back electron transfer between members of the electron donor-acceptor pair. A non-homogeneous medium provides a unique arena in which sensitive environmental effects can be probed and altered. As practical applications of photoinduced electron transfer come increasingly to the fore, exploitation of these arranged media in providing order at the molecular level will be ever more important. The lessons to be learned from thorough studies of such photoinduced electron transfer reactions will be of significance not only to physical, organic, and inorganic photochemists but also to materials scientists and engineers. This article has provided but a brief summary of how self-assembled systems can be used, either alone or in conjunction with a molecular photosensitizer or semiconductor photocatalyst, as vehicles to enhance supramolecular interactions and observable chemistry. Many fascinating questions still remain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9 References

  1. Fox MA, Chanon M (eds) (1988) Photoinduced electron transfer, Elsevier, Amsterdam

    Google Scholar 

  2. Fox MA (1990) Photochem Photobio

    Google Scholar 

  3. Fox MA (1986) Adv Photochem 13: 237

    Google Scholar 

  4. Deisenhofer J, Epp O, Miki K, Huber R, and Michel H (1984) J Biol 180: 385

    Google Scholar 

  5. Rehm D and Weller A (1970) Isr J Chem 8: 259

    Google Scholar 

  6. Fox MA (ed) (1985) Organic phototransformations in nonhomogeneous media, American Chemical Society, Washington

    Google Scholar 

  7. Fendler JH (1982) Membrane mimetic chemistry, Wiley, New York

    Google Scholar 

  8. Thomas JK (1984) The chemistry of excitation at interfaces, American Chemical Society, Washington

    Google Scholar 

  9. Serpone N (1988) In: Photoinduced electron transfer, vol D, Fox MA and Chanon M (eds), Elsevier, Amsterdam, p 47

    Google Scholar 

  10. Fox MA and Singletary N (1982) J Org Chem 47: 3412

    Google Scholar 

  11. Grätzel M (1987) Tetrahedron 43: 1679

    Google Scholar 

  12. Ulrich T, Steiner UE, and Schlenker W (1986) Tetrahedron 42: 6285

    Google Scholar 

  13. Ramnath N, Ramesh V, and Ramamurthy V (1985) J Photochem 31: 75

    Google Scholar 

  14. Luisi PL and Straub BF (eds) (1984) Reverse micelles, Plenum, New York

    Google Scholar 

  15. Atik S, Kuczynski J, Milosavljevic BH, Chandrasekaran K, and Thomas JK (1985) Amer Chem Soc Sympos Ser 272: 303

    Google Scholar 

  16. Whitesides GM and Ferguson GS (1988) Chemtracts — Org Chem 1: 171

    Google Scholar 

  17. Blodgett KB and Langmuir I (1935) Phys Rev 51: 964

    Google Scholar 

  18. Möbius D (1987) ibid 11: 203

    Google Scholar 

  19. Tien HT (1974) Bilayer lipid membranes: theory and practice, Marcel Dekker, New York

    Google Scholar 

  20. Kunitake T (1987) New J Chem 11: 141

    Google Scholar 

  21. Haubs M and Ringsdorf H (1987) New J Chem 11: 197

    Google Scholar 

  22. Fendler JH (1980) Acct Chem Res 13: 7

    Google Scholar 

  23. Fendler JH (1988) In: Photoinduced Electron Transfer, Fox MA and Chanon M (eds), vol B, Elsevier, Amsterdam, p 541

    Google Scholar 

  24. Ben Chaabane T, Bernas A, Grand D, and Hautecloque S (1987) J Phys Chem 91: 6055

    Google Scholar 

  25. Rabani J (1988) In: Photoinduced Electron Transfer, Fox MA and Chanon M (eds), vol B, Elsevier Amsterdam, p 642

    Google Scholar 

  26. Bard AJ (1980) Science 207, 139

    Google Scholar 

  27. Nakabayashi S and Kawai T (1988) In: Photoinduced electron transfer, Fox MA and Chanon M (eds), Elsevier, Amsterdam, vol B, p 599

    Google Scholar 

  28. Pichat P and Fox MA ibid, ( vol D, p 241

    Google Scholar 

  29. Schiavello M (Ed) (1988) NATO Adv Sci Ser 237

    Google Scholar 

  30. Pelizzetti E and Serpone N (Eds) (1986) NATO Adv Sci Ser 174

    Google Scholar 

  31. Pelizzetti E and Serpone N (Eds) (1989) Photocatalysis — fundamentals and applications, Wiley, New York

    Google Scholar 

  32. Fox MA (1990) In: Advances in electron transfer chemistry, Mariano P (ed) JAI Press, Greenwich, CT

    Google Scholar 

  33. Anpo M, Nishiguchi H, and Fujii T (1990) Res Chem Intermed (in press)

    Google Scholar 

  34. Seri-Levy A, Samuel J, Farin D, and Avnir D (1989) In: Photochemistry on Solid Surfaces (Anpo M and Matsuura T (eds)) Stud Surf Sci Catal 47: 353

    Google Scholar 

  35. Bare SR and Somorjai GA (1988) NATO Adv Sci Inst Ser 237: 63

    Google Scholar 

  36. Bard AJ (1982) J Phys Chem 86: 172

    Google Scholar 

  37. Grätzel M (1989) Heterogeneous photochemical electron transfer, CRC Press, Boca Raton, FL

    Google Scholar 

  38. Nozik AJ (1978) Ann Rev Phys Chem 29: 189

    Google Scholar 

  39. Bard AJ (1979) J Photochem 10: 50

    Google Scholar 

  40. Thomas JK (1977) Accts Chem Res 10: 133

    Google Scholar 

  41. Thomas JK (1984) Chemistry of excitation at interfaces, American Chemical Society, Washington

    Google Scholar 

  42. Grätzel M and Thomas JK (1974) J Phys Chem 18: 2248

    Google Scholar 

  43. Alkaitis SA and Grätzel M (1970) J Am Chem Soc 98: 3549

    Google Scholar 

  44. Li ASW and Kevan L (1983) ibid 105: 5752

    Google Scholar 

  45. Bernas A, Grand D, Hautecloque S, and Giannotti C (1986) J Phys. Chem 90: 6189

    Google Scholar 

  46. Bernas A, Grand D, Hautecloque S, and Myasocdova T (1984) Chem Phys Lett 104: 105

    Google Scholar 

  47. Grand D, Hautecloque S, Bernas A, and Petit A (1983) J Phys Chem 87: 5236

    Google Scholar 

  48. Ohta N and Kevan L (1985) J Phys Chem 89: 2415

    Google Scholar 

  49. Hashimoto S and Thomas JK (1985) J Phys Chem 89: 2771

    Google Scholar 

  50. Plonka A and Kevan L (1985) J Phys Chem 89: 2087

    Google Scholar 

  51. Szajdzinska-Pietek E, Maldonado R, Kevan L, and Jones RRM (1985) J Am Chem Soc 107: 6467

    Google Scholar 

  52. Baglioni P and Kevan L (1987) J Phys Chem 91: 2106

    Google Scholar 

  53. Rivara-Minten E, Baglioni P, and Kevan L (1988) J Phys. Chem 92: 2613

    Google Scholar 

  54. Leheny AR, Rossetti R, and Brus LE (1985) J Phys Chem 89: 4091

    Google Scholar 

  55. Kinjo A, Uchihara T, Alkaitis SA, Beck G, and Grätzel M (1975) J Am Chem Soc 97: 5723

    Google Scholar 

  56. Moroi Y, Infelta PP, and Grätzel M (1978) J Chem Phys 69: 1522

    Google Scholar 

  57. Razem B, Wong M, and Thomas JK (1978) J Am Chem Soc 100: 1629

    Google Scholar 

  58. Waka Y, Hamamoto K, and Mataga N (1978) Chem Phys Lett 53: 242

    Google Scholar 

  59. Okura I, Kita T, Aono S, and Kaji N (1985) J Mol Catal 32: 361

    Google Scholar 

  60. Takagi K, Miyake N, Nakamura E, Usami H, Sawaki Y, and Iwamura H (1988) J Chem Soc, Faraday Trans 184: 3475

    Google Scholar 

  61. Bernas A, Grand D, and Hautecloque S (1988) Radiat Phys Chem 32: 309

    Google Scholar 

  62. Lerebours B, Chevalier Y, and Pileni MP (1985) Chem Phys Lett 117: 89

    Google Scholar 

  63. Chevalier S, Lerebours B, and Pileni MP (1984) J Photochem 27: 301

    Google Scholar 

  64. Hubig S, Dionne BC, Rodgers MAJ (1986) J Phys Chem 90: 5873

    Google Scholar 

  65. Hubig S and Rodgers MAJ (1988) Chem Phys Lett 146: 539

    Google Scholar 

  66. Nakagaki M, Komatsu H, and Handa T (1985) Bull Chem Soc Jpn 58: 3197

    Google Scholar 

  67. Burbo EM, Gasanova LV, and Dzhabiev TS (1984) Izv Akad Nauk SSSR, Ser Khim 2246

    Google Scholar 

  68. Burbo EM, Gasanova LV, and Dzhabiev TS (1984) Izv Akad Nauk SSSR, Ser Khim 2462

    Google Scholar 

  69. Steinmüller F and Rau H (1985) J Photochem 28: 297

    Google Scholar 

  70. Nakagaki M, Komatsu H, Tanaka H, and Hanad T (1986) Bull Chem Soc Jpn 59: 3007

    Google Scholar 

  71. Yuasa S, Nakahira T, Iwabuchi S, and Kojima K (1984) J Chem Res (s) 410

    Google Scholar 

  72. Tanimoto Y, Takayama M, Shima S, and Itoh M (1985) Bull Chem Soc Jpn 58: 3641

    Google Scholar 

  73. Atherton SJ, Hubig SM, Callan TJ, Duncanson JA, Snowden PT, and Rodgers MAJ (1987) J Phys Chem 91: 3137

    Google Scholar 

  74. Encinas MV and Lissi EA (1985) Photochem Photobiol 42: 491

    Google Scholar 

  75. Encinas MV and Lissi EA (1986) Photochem Photobiol 44: 579

    Google Scholar 

  76. Obyknovennaya IE and Cherkasov AS (1988) Opt. Spectrosc 64: 262

    Google Scholar 

  77. Baskii EL, Kamilova FD, Remennikov VG, and Samuilov VD (1986) Biofizika 31: 789

    Google Scholar 

  78. Umrikhina AV, Luganskaya AN, and Krasnovskii AA (1986) ibid 31: 936

    Google Scholar 

  79. Seely GR and Haggy GA

    Google Scholar 

  80. Ohkubo K, Chiba M, and Yamashita K (1985) J Mol Catal 32: 1

    Google Scholar 

  81. Snyder SW, Raines DE, Rieger PT, Demas JN, and DeGraff BA (1985) Langmuir 1: 548

    Google Scholar 

  82. Mackay RA and Grätzel M (1985) Ber Bunsenges Phys Chem 89: 526

    Google Scholar 

  83. Ohkubo K and Arikawa Y (1985) J Mol Catal 33: 65

    Google Scholar 

  84. Okazaki M, Sakata S, Konaka R, and Shiga T (1985) J Am Chem Soc 107: 7214

    Google Scholar 

  85. Tanimoto Y, Takayama M, Itoh M, Nakagaki R, and Nagakura S (1986) Chem Phys Lett 129: 414

    Google Scholar 

  86. Tanimoto Y, Shimidzu K, Udagawa H, and Hoh M (1983) Chem Lett 153

    Google Scholar 

  87. Burkey TJ and Griller D (1985) J Am Chem Soc 107: 246

    Google Scholar 

  88. Ghosh S, Petrin M, and Maki AH (1986) J Phys Chem 90: 1643

    Google Scholar 

  89. Degani Y and Willner I (1985) J Phys Chem 89: 5685

    Google Scholar 

  90. Hamity M and Lema RH (1988) Can J Chem 66: 1552

    Google Scholar 

  91. Rehak V and Rybova Y (1988) Coll Czech Chem Commun 53: 1

    Google Scholar 

  92. Sakai M, and Handa T (1984) Chem Pharm Bull 32: 4241

    Google Scholar 

  93. Takagi K, Aoshima K, Sawaki Y, and Iwamura H (1985) J Am Chem Soc 107: 47 (1985)

    Google Scholar 

  94. Hautecloque S, Grand D, and Bernas A (1985) J Phys Chem 89: 2705

    Google Scholar 

  95. Fujita S, Yamada H, Suga K, and Fujihira M (1988) Proc Electrochem Soc 88–14: 105

    Google Scholar 

  96. Okura I, Kita T, Aono S, and Kaji N (1985) J Mol Catal 33: 341

    Google Scholar 

  97. Okura I, Kaji N, Aono S, Nishisaka T (1986) Bull Chem Soc Jpn 59: 3967

    Google Scholar 

  98. Oncescu T, Contineanu M, Ionescu SG, Olteanu M, Lega M and Meahcov L (1987) Rev Roum Chim 32: 637

    Google Scholar 

  99. Abdul-Ghani AJ, Abdul-Kareem S, and Maree SN (1987) Int J Hydrogen Energy 12: 547

    Google Scholar 

  100. Krasnovsky AA (1979) In: Photosynthesis in relation to model systems, Barber J (ed), Elsevier, Amsterdam

    Google Scholar 

  101. Kalyanasundaram K and Porter G (1978) Proc Roy Soc London A 364: 29

    Google Scholar 

  102. Kalyanasundaram K, Grätzel M, and Pelizzetti E (1986) Coord. Chem Rev 69: 57

    Google Scholar 

  103. Kuczynski J and Thomas JK (1985) Langmuir 1: 170

    Google Scholar 

  104. Hidaka H, Kubota H, Grätzel M, Serpone N, and Pelizzetti E (1985) Nouv J Chim 9: 67

    Google Scholar 

  105. Orr GL and Hogan ME (1985) J Agric Food Chem 33: 968

    Google Scholar 

  106. Adar E, Degani Y, Goren Z, and Willner I (1986) J Am Chem Soc 108: 4696

    Google Scholar 

  107. Syamala MS, Devanathan S, and Ramamurthy V (1986) J Photochem 34: 219

    Google Scholar 

  108. Pileni MP, Brochette P, Pigeonniere BL (1986) NATO Adv Sci Ser C 165: 253

    Google Scholar 

  109. Levin PP and Kuz'min VA (1988) Khim Fiz 7: 909

    Google Scholar 

  110. Ulrich T and Steiner UE (1984) Chem Phys Lett 112: 365

    Google Scholar 

  111. Willner I, Ford WE, Otvos JW, and Calvin M (1979) Nature (London) 280: 830

    Google Scholar 

  112. Costa SM, Aires de Barros MR, and Conde JP (1985) J Photochem 28: 153

    Google Scholar 

  113. Atik AA and Thomas JK (1981) J Am Chem Soc 103: 3543

    Google Scholar 

  114. Brochette P, Zemb T, Mathis P, and Pileni MP (1987) J Phys Chem 91: 1444

    Google Scholar 

  115. Brochette P and Pileni MP (1985) Nouv J Chim 9: 551

    Google Scholar 

  116. Costa SM and Brookfield RL (1986) J Chem Soc Faraday Trans 282: 991

    Google Scholar 

  117. Takagi K, Suddaby BR, Vadas SL, Backer CA, and Whitten DG (1986) J Am Chem Soc 108: 7865

    Google Scholar 

  118. Petit C and Pileni MP (1988) J Phys Chem 92: 2282

    Google Scholar 

  119. Meyer M, Wallberg C, Kurihara BH, and Fendler JH (1984) Chem Commun 90

    Google Scholar 

  120. Fouassier JP, Lougnot DJ, and Zuchowicz I (1986) Eur Polym J 22: 933

    Google Scholar 

  121. Jones CE and Mackay RA (1978) J Phys Chem 82: 63

    Google Scholar 

  122. Jones CA, Weaner LE, and Mackay RA (1980) ibid 84: 1495

    Google Scholar 

  123. Dixit NS and Mackay RA (1979) J Phys Chem 83: 805

    Google Scholar 

  124. Mackay RA and Grätzel M (1985) Ber Bunsenges Phys Chem 89: 526

    Google Scholar 

  125. Grätzel CK, Kira A, Jirousek M and Grätzel M (1982) J Phys Chem 86: 2710

    Google Scholar 

  126. Atik SS and Thomas JK (1981) J Am Chem Soc 103: 4367

    Google Scholar 

  127. Kiwi J and Grätzel M (1978) J Am Chem Soc 100: 6314

    Google Scholar 

  128. Kiwi J and Grätzel MJ (1980) Phys Chem 84: 1503

    Google Scholar 

  129. Grätzel CK and Grätzel M (1982) J Phys Chem 86: 2710

    Google Scholar 

  130. Pouligny B, Lalanne JR, and Ducasse A (1986) Chem Phys 102: 241

    Google Scholar 

  131. Pileni MP and Chevalier S (1983) J Coll Interface Sci 92: 326

    Google Scholar 

  132. Savinov EN, Grudzdkov YuA, and Parmon VN (1988) Khim Fiz 7: 1070

    Google Scholar 

  133. Mandler D and Willner I (1987) J Phys Chem 91: 3600

    Google Scholar 

  134. Grätzel CK, Jirousek M, and Grätzel M (1985) Colloids Surf 13: 221

    Google Scholar 

  135. Möbius D (1987) In: Kinetics of nonhomogeneous processes, Freeman GR (ed) Wiley, New York, p 533

    Google Scholar 

  136. Kuhn H, Böbins D, and Bucher H (1972) In: Physical methods of chemistry, vol 1, part 3, Weissberger A and Rossiter BW, (eds), Wiley, New York p 577

    Google Scholar 

  137. Mann B and Kuhn H (1971) J Appl Phys 42: 4348

    Google Scholar 

  138. Closs GL and Miller JR (1988) Science 240: 440

    Google Scholar 

  139. Fujihira M, Nishiyama K and Aoki K (1988) Thin Solid Films 160: 317

    Google Scholar 

  140. Fromherz P and Reinbold G (1988) Thin Solid Films 160: 347

    Google Scholar 

  141. Mooney WF and Whitten DG (1986) J Am Chem Soc 108: 5712

    Google Scholar 

  142. Chauvet JP, Agrawal ML, Hug GL, and Patterson LK (1985) Thin Solid Films 133: 227

    Google Scholar 

  143. Suci PA and Reichert WM (1988) Langmuir 4: 1131

    Google Scholar 

  144. Leitner A, Lippitsch ME, Draxler S, Riegler M and Aussenegg FR (1985) Thin Solid Films 132: 55

    Google Scholar 

  145. Kinnunen PKJ, Virtanen JA, Tulkki AP, Ahuja RC, and Möbius D (1985) ibid, 132: 193

    Google Scholar 

  146. Iriyama K, Yoshihara M, Ozaki Y, Ishii T, and Yasui S (1985) ibid, 132: 229

    Google Scholar 

  147. Kuhn H (1970) J Photochem 10: 111

    Google Scholar 

  148. Nagamura T, Matano K, and Ogawa T (1987) J Phys Chem 91: 2019

    Google Scholar 

  149. van der Auweraer M, Verschuere B, Biesmans G, De Schryver FC, and Willig F (1987) Langmuir 3: 992

    Google Scholar 

  150. Willig F, Eichberger R, Bitterling K, Durfee WS, Storck W, and van der Auweraer M (1987) Ber Bunsenges Phys Chem 91: 869

    Google Scholar 

  151. Fujihira M, Nishiyama K, and Hamaguchi Y (1986) Chem Commun 823

    Google Scholar 

  152. Yamazaki T, Tamai N, and Yamazaki I (1986) Chem Phys Lett 124: 326

    Google Scholar 

  153. Lovelock B, Grieser F, and Healy TW (1986) Langmuir 2: 443

    Google Scholar 

  154. Nagamura T, Sakai K, and Ogawa T (1988) Chem Commun 1035

    Google Scholar 

  155. Ando E, Hibino J, Hashida T and Morimoto K (1988) Thin Solid Films 160: 279

    Google Scholar 

  156. Tien HT and Varma SP (1970) Nature 227: 1232

    Google Scholar 

  157. Tien HT (1982) Bioelectrochem Bioenerget 9: 559

    Google Scholar 

  158. Hong FT (1976) Photochem Photobio 24: 155

    Google Scholar 

  159. Ilani HW and Berns DS (1972) J Membr Biol 8: 333

    Google Scholar 

  160. Fong F and Mauzerall D (1972) Nature 240: 152; Hong FT and Mauzerall D (1974) Proc Nat Acad Sci USA 71: 1564

    PubMed  Google Scholar 

  161. Bhownik BB, Dutta R, and Nandy P (1985) Indian J Chem, Sect A 24: 1046

    Google Scholar 

  162. Yau SL, Rillema DP, Jackman DC, and Daignault LG (1988) J Membr Sci 37: 27

    Google Scholar 

  163. Jackman DC, Thomas CA, Rillema DP, Yau SI, and Callahan RW (1987) J Membr Sci 30: 213

    Google Scholar 

  164. Semenova AN, Brannikova YaV, Nikandrov VV, and Krasnovskii AA (1987) Biol Membr 6: 648

    Google Scholar 

  165. Nagamura T, Takeyama N, Tanaka K, and Matsuo T (1986) J Phys Chem 90: 2247

    Google Scholar 

  166. Yablonskaya EE, Klabunovskii EI, Shafirovich VYa, and Shilov AE (1986) Dokl Akad Nauk SSSR 286: 150

    Google Scholar 

  167. Siggel U, Hungerbuehler H, and Fuhrhop JH (1987) J Chim Phys Phys-Chim Biol 84: 1055

    Google Scholar 

  168. Ford WE and Tollin G (1986) Photochem Photobio 48: 319

    Google Scholar 

  169. Senthilathipan V and Tollin G (1985) ibid 42: 437

    Google Scholar 

  170. Nakamura H, Fujii H, Sakaguchi H, Matsuo T, Nakashima N, Yoshihara K, Ikeda T, and Tazuke S (1988) J Phys Chem 92: 6151

    Google Scholar 

  171. Takeyama N, Skaguchi H, Hashiguchi Y, Shimomura M, Nakamura H, Kunitake T, and Matsuo T (1985) Chem Lett 1735

    Google Scholar 

  172. Bhownik BB, Senvarma C, and Nandy P (1988) Phys Lett A 130: 55

    Google Scholar 

  173. Liu TM and Mauzerall D (1985) Biophys J 48: 1

    Google Scholar 

  174. Woodle M, Zhang JW, and Mauzerall D (1987) ibid 52: 577

    Google Scholar 

  175. Hurst JK and Thompson DHP (1986) J Membr Sci 28: 3

    Google Scholar 

  176. Baral S, Zhao XK, Rolandi R, and Fendler JH (1987) J Phys Chem 91: 2701

    Google Scholar 

  177. Youn HC, Baral S, and Fendler JH (1988) J Phys Chem 92, 6320

    Google Scholar 

  178. Ford WE and Tollin G (1982) Photochem Photobio 38: 441

    Google Scholar 

  179. Parmon VN, Lymar SV, Tsvetkov IM, and Zamaraeoi KI (1983) J Mol Catal 21: 353

    Google Scholar 

  180. Turley WD and Offen HW (1986) J Phys Chem 90, 1967

    Google Scholar 

  181. Usui S, Nakamura H, Ogata T, Uehata A, Motonaga A, and Matsuo T (1987) Chem Lett 1779

    Google Scholar 

  182. Knerel'man EI and Shafirovich VYa (1987) Kinet Catal 28: 1069

    Google Scholar 

  183. Cho DW and Yoon M (1986) Bull Korean Chem Soc 7: 78

    Google Scholar 

  184. Zhao XK, Baral S, Rolandi R, and Fendler JH (1988) J Am Chem Soc 110: 1012

    Google Scholar 

  185. Fendler JH and Tundo P (1984) Accts Chem Res 17: 3

    Google Scholar 

  186. Serrano J, Mucino S, Millan S, Reynoso R, Fucugauchi LA, Reed W, Nome F, Tundo P, and Fendler JH (1985) Macromol 18: 1999

    Google Scholar 

  187. Paleos CM (1985) Chem Soc Rev 14: 45

    Google Scholar 

  188. Lissi E, Olea A, Zanocco A, and Macuer M (1985) Contrib Cient Tecnol 100, (1985) Chem Abstr 105, 15132

    Google Scholar 

  189. Koch H, Laschewsky A, Ringsdorf H, and Teng K (1986) Makromol Chem 187: 1843

    Google Scholar 

  190. Helgerson SL, Mathew MK, Bivin DB, Wolber PK, Heinz E, and Stoeckenius W (1985) Biophys J 48: 709

    Google Scholar 

  191. McRae DG, Yamamoto E, and Towers GHN (1985) Biochim Biophys Acta 821: 488

    Google Scholar 

  192. Fang Y and Tollin G (1988) Photochem Photobio 47: 741

    Google Scholar 

  193. (1988) ibid, 47: 751

    Google Scholar 

  194. Hiff T and Kevan L (1988) J Phys Chem 92: 3982

    Google Scholar 

  195. Shinoda K and Friberg S (1975) Adv Colloid Interface Sci 4: 281

    Google Scholar 

  196. Kunitake T and Okahata Y (1977) J Am Chem Soc 97: 3860

    Google Scholar 

  197. Willner I, Ford WE, Otvos JW, and Calvin M (1979) Nature 280: 830

    Google Scholar 

  198. Gösele U, Klein UKA, and Hauser M (1979) Chem Phys Lett 68: 29

    Google Scholar 

  199. Jones CE, Jones CA, and Mackay R (1979) J Phys Chem 83: 805

    Google Scholar 

  200. Lee LYC, Hurst JK, Politi M, Kurihara K, and Fendler JH (1983) J Am Chem Soc 105: 370

    Google Scholar 

  201. Shafirovich VYa, Kuz'min VA, Levin PP, and Khannanov NK (1984) Dokl Akad Nauk SSSR 276: 911

    Google Scholar 

  202. Tsvetkov IM, Maravin GB, Lymar SV, and Parmon VN (1984) React Kin Catal Lett 25: 95

    Google Scholar 

  203. Semenova AN, Nikandrov VV, and Krasnovskii AA (1985) Dokl Nauk SSSR 282: 189

    Google Scholar 

  204. Khannanov NK, Kuz'min VA, Levin PP, Shafirovich VYa, and Yablonskaya EE (1986) Khim Fiz 5: 1358

    Google Scholar 

  205. Yablonskaya EE, Nadtochenko VA, Shafirovich VYa (1986) Izv Akad Nauk SSSR, Ser Khim 334

    Google Scholar 

  206. Tsvetkov IM, Lymar SV, Parmon VN, and Zameraev KI (1986) Kinet Catal 27: 98

    Google Scholar 

  207. Rafaeloff R, Maliyackel AC, Grant JL, Otvos JW, and Calvin M (1986) Nouv J Chim 10: 613

    Google Scholar 

  208. Knerel'man EI and Shafirovich VA Izv Akad Nauk SSSR, Ser. Khim and Yablonskaya EE (1987) New J Chem 11: 687

    Google Scholar 

  209. Yablonskaya EE and Shafirovich VYa (1987) Izv Nauk SSSR, Ser Khim 1011

    Google Scholar 

  210. Kalyanasundaram K (1987) In: Photochemistry in microheterogeneous systems, Academic, New York

    Google Scholar 

  211. Park YT, Kim YD, Burkhart RD, and Caldwell NJ (1988) Bull Korean Chem Soc 9: 84

    Google Scholar 

  212. Lee LYC and Hurst JK (1984) J Am Chem Soc 106: 7411

    Google Scholar 

  213. Tsuchida E, Kaneda M, Nishide H, and Itoshino M (1986) J Phys Chem 90: 2283

    Google Scholar 

  214. Dannhauser TJ, Nanog M, Oku N, Anzai K, and Loach PA (1986) J Am Chem Soc 108: 5865

    Google Scholar 

  215. Luneva NP, Maier VE, Shafirovich VYa, and Shilov AE (1987) Kinet Catal 28: 446

    Google Scholar 

  216. Fendler JH (1987) Tetrahedron 43: 1713

    Google Scholar 

  217. Tricot YM and Fendler JH (1986) J Phys Chem 90: 3369

    Google Scholar 

  218. Watzke HJ and Fendler JH (1987) J Phys Chem 91: 854

    Google Scholar 

  219. Rafaeloff R, Tricot YM, Nome F, and Fendler JH (1985) J Phys Chem 89: 533

    Google Scholar 

  220. Tricot YM, Emeren A, and Fendler JH (1985) ibid 89: 4721

    Google Scholar 

  221. Youn HC, Tricot YM, and Fendler JH (1987) ibid 91: 581

    Google Scholar 

  222. Maier VE and Shafirovich VYa (1984) Dokl Akad Nauk SSSR 277: 125

    Google Scholar 

  223. Youn HC, Baral S, and Fendler JH (1988) J Phys Chem 92: 6320

    Google Scholar 

  224. Tricot YM and Manassen J (1988) J Phys Chem 92: 5239

    Google Scholar 

  225. For example, (a) Treanor RL and Weiss RG (1988) J Am Chem Soc 110: 2170

    Google Scholar 

  226. Leigh WJ and Jakobs S (1987) Tetrahedron 43: 1393

    Google Scholar 

  227. Liang P and Thomas JK (1988) J Colloid Interface Sci 124: 358

    Google Scholar 

  228. Sisido M, Kawaguchi K, Takeuchi K, and Imanishi Y (1988) Mol Cryst Liq Cryst 126B: 263

    Google Scholar 

  229. Markovitsi D, Tran-Thi TH, and Briois V (1988) J Am Chem Soc 110: 2001

    Google Scholar 

  230. Blanzat B, Barthou C, Tercier N, André JJ, and Simon J (1987) J Am. Chem Soc 109: 6193

    Google Scholar 

  231. Gregg BA, Fox MA, and Bard AJ (1988) J Am Chem Soc 111: 3024

    Google Scholar 

  232. Gregg BA, Fox MA, and Bard AJ (1990) J Phys Chem 94 (in press)

    Google Scholar 

  233. Morishima Y, Itoh Y, Nozakura S, Ohno T, and Kato S (1984) Macromol 17: 2264; Morishima Y and Nozakura S (1986) J Polym Sci 74: 1

    Google Scholar 

  234. Morishima Y, Kobayashi T, Furui T, and Nosakura S (1987) Macromol 20: 1707

    Google Scholar 

  235. Otvos JW, Casti TE, and Calvin M (1984) Photochemistry of metal complexes conference, Tokyo, ERAB 9: 50335

    Google Scholar 

  236. Morawetz H and Vogel B (1970) J Am Chem Soc 92: 7532

    Google Scholar 

  237. Morawetz H (1970) Accts Chem Res 3: 354

    Google Scholar 

  238. Ise N, Okubo T, and Kunugi S (1982) Accts Chem Res 15: 171

    Google Scholar 

  239. Webber SE (1986) Macromol 19: 1658

    Google Scholar 

  240. Morishima Y, Kobayashi T, and Nozakura S (1985) J Phys Chem 89: 4081

    Google Scholar 

  241. Fromherz P and Rieger B (1986) J Am Chem Soc 108: 5361

    Google Scholar 

  242. Purugganan MD, Kumar CV, Turro NJ, and Barton JK (1988) Science 241: 1645

    Google Scholar 

  243. Atherton SJ and Beaumont PC (1986) J Phys Chemn 90: 2252

    Google Scholar 

  244. Brunschwig BS, Delaive P, English AM, Goldberg M, Gray HB, Mayo SL, and Sutin N (1985) Inorg Chem 24: 3743

    Google Scholar 

  245. Bowler BE, Mease TJ, Mayo SL, Richards JH, and Gray HB (1989) J Am Chem Soc 111: 8757

    Google Scholar 

  246. Sassoon RE and Rabani J (1980) J Phys Chem 84: 1319

    Google Scholar 

  247. Matsuo T, Sakamoto T, Takuna K, Sakura K, and Ohsako T (1981) J Phys Chem 85: 1277

    Google Scholar 

  248. Sassoon RE, Gershuni S, and Rabani J (1985) J Phys Chem 89: 1937

    Google Scholar 

  249. Sassoon RE and Rabani J (1984) J Phys Chem 88: 6389

    Google Scholar 

  250. Margerum LD, Murray RW, and Meyer TJ (1986) J Phys Chem 90: 728

    Google Scholar 

  251. Olmsted J, McClanahan SF, Danielson E, Younathan JN, and Meyer TJ (1987) J Am Chem Soc 109: 3297

    Google Scholar 

  252. Milosavljevic BH and Thomas JK (1986) J Am Chem Soc 108: 2513

    Google Scholar 

  253. Thomas JK (1987) J Phys Chem 91: 207

    Google Scholar 

  254. Herron N, Wang Y, Eddy MM, Stucky GD, Cox DE, Moller K, Bein T (1989) J Am Chem Soc 111: 530

    Google Scholar 

  255. Fox MA and Pettit TL (1989) Langmuir 5: 1056

    Google Scholar 

  256. Dutta PK and Incavo JA (1987) J Phys Chem 91: 4443

    Google Scholar 

  257. Mau AWH, Huang CB, Kakuta N, Bard AJ, Campion A, Fox MA, White JM, and Webber SE (1984) J Am Chem Soc 106: 6537

    Google Scholar 

  258. Kakuta N, Bard AJ, Campion A, Fox MA, Webber SE, and White JM (1985) J Phys Chem 89: 48

    Google Scholar 

  259. Kuczynski J, Milosavljevic BH, and Thomas JK (1984) J Phys Chem 88: 980

    Google Scholar 

  260. Anzai J, Ueno A, and Osa T (1987) J Chem Soc, Perkin Trans 2: 67

    Google Scholar 

  261. Sasaki H, Anzai J, Ueno A, and Osa T (1985) Nippon Kagaku Kaishi 1194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jochen Mattay

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Anne Fox, M. (1991). Photoinduced electron transfer in arranged media. In: Mattay, J. (eds) Photoinduced Electron Transfer III. Topics in Current Chemistry, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53257-9_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-53257-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53257-6

  • Online ISBN: 978-3-540-46785-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics