Advertisement

Temperature rising elution fractionation

  • Leslie Wild
  • G. Glöckner
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 98)

Abstract

An outline is given of the development of temperature rising elution fractionation (TREF) technique for polymer separation on the basis of crystallizability. The TREF technique has found application mainly in the area of analysis of semi-crystalline polyolefins and its development has been significantly influenced by the desire to establish the structure of linear low density polyethylenes. These materials exhibit an unusually broad distribution of comonomer which can be readily explored by TREF. Systems have been developed which can provide fractionation on a preparative scale, where recovery of fractions for further analysis is desirable and more recently on a small scale, where rapid analysis using detectors provide refined crystallizability distributions. A description is given of these fractionation systems along with a discussion of the separation mechanism and the significance of controlling the crystallization step to achieve fractionation efficiency.

Application of TREF is discussed with reference to low density polyethylenes made by both the high and low pressure process, ethylene vinyl acetate copolymers and poly-propylenes. The value of TREF for analysis of polymer blends is emphasized along with the potential for cross-fractionation combining TREF with a molecular weight fractionation for detailed analysis of polymer structure. Finally the point is made that TREF is becoming much more widely used and accepted as a technique for structural evaluation. Further improvements in instrumentation and techniques for controlling the crystallization step are expected. These will further enhance the usefulness of TREF and pave the way for its greater use both in the area of polyolefins as well as for other crystalline polymer systems.

Keywords

Size Exclusion Chromatography Ethylene Vinyl Acetate Comonomer Content Size Exclusion Chromatography Analysis Molecular Weight Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

α-CN

α-chloronaphthalene

o-DCB

ortho-dichlorobenzene

DEC

Decalin

DMA

Dynamic Mechanical Analysis

DSC

Differential scanning calorimetry

DTA

Differential Thermal Analysis

EA

Ethylene-ethyl acrylate copolymer

EB

Ethylene-butene copolymer

EP

Ethylene-propylene copolymer

EPDM

Ethylene-propylene-diene terpolymer

EPR

Ethylene-propylene rubber

EVA

Ethylene-vinyl acetate copolymer

GEF

Gradient elution fractionation

HDPE

High density polyethylene

IR

Infra-red

IV

Intrinsic Viscosity

LDPE

Low density polyethylene

LLDPE

Linear low density polyethylene

MFI

Melt flow index

MI

Melt index

4-MP-1

4-methyl pentene-1

MWD

Molecular weight distribution

NMR

Nuclear magnetic resonance

PIB

Polyisobutylene

PP

Polypropylene

RI

Refractive index

SCB

Short-chain branching

SEC

Size exclusion chromatography

TCB

Tri-chlorobenzene

TREF

Temperature rising elution fractionation

VLDPE

Very low density polyethylene

C

Carbon atom

C=C

Vinyl group

ΔH

Heat of fusion

M

Molecular weight

NA

Mole fraction of comonomer units

R

Gas constant

r1 · r2

Reactivity ratio

Tm

Melting temperature

v

volume fraction

V

Molar volume

\(\bar x\)

Average degree of polymerization

χ

Interaction parameter

[η]

Intrinsic viscosity

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shirayama K, Okada T and Kita S (1965) J Polym Sci A-2, 3: 907Google Scholar
  2. 2.
    Desreux V and Spiegels MC (1950) Bull Soc Chim Belg 59: 476Google Scholar
  3. 3.
    Schneider NS (1965) J Polym Sci C 8: 179Google Scholar
  4. 4.
    Moore JC (1964) J Polymer Sci A 2: 835CrossRefGoogle Scholar
  5. 5.
    Kamath P and Wild L (1966) Polym Eng Sci 6: 213CrossRefGoogle Scholar
  6. 6.
    Wijga PW, van Schooten J and Boerma J (1960) Makromol Chem 36: 115CrossRefGoogle Scholar
  7. 7.
    Bergström C and Avela E (1979) J Appl Polym Sci 23: 163CrossRefGoogle Scholar
  8. 8.
    Wild L and Ryle T (1977) Polym Preprint Am Chem Soc 18: 182Google Scholar
  9. 9.
    Wild L, Ryle D, Knobeloch D and Peat I (1982) J Polym Sci Polym Phys Ed 20: 441CrossRefGoogle Scholar
  10. 10.
    Usami T, Gotoh Y and Takayama S (1986) Macromols 19: 2722CrossRefGoogle Scholar
  11. 11.
    Kelusky EC, Elston CT and Murray RE (1987) Polym Eng Sci 27: 1562CrossRefGoogle Scholar
  12. 12.
    Hazlitt LA and Moldovan DG (1989) US Pat 4,798,081Google Scholar
  13. 13.
    Wild L (February 1989) SPE Polyolefins VI Conference Prepr 413Google Scholar
  14. 14.
    Knobeloch DC and Wild L (February 1984) SPE Polyolefins IV Conference Prepr 427Google Scholar
  15. 15.
    Nakano S and Goto Y (1981) J Appl Polym Sci 26: 4217CrossRefGoogle Scholar
  16. 16.
    Flory PJ (1955) Trans Faraday Soc 51: 848CrossRefGoogle Scholar
  17. 17.
    Prasad A and Mandelkern L (1989) Macromols 22: 914Google Scholar
  18. 18.
    Pavan A, Provasoli A, Moraglio G and Zambelli A (1977) Makromol Chem 178: 1099Google Scholar
  19. 19.
    Hosoda A (1988) Polym J 20: 5, 383Google Scholar
  20. 20.
    Shirayama K, Kita S and Watabe H (1972) Makromol Chem 151: 97Google Scholar
  21. 21.
    Roedel MJ (1953) J Am Chem Soc 75: 6110Google Scholar
  22. 22.
    Raff RAV and Doak KW (1964) Crystalline Olefin Polymers, Interscience New YorkGoogle Scholar
  23. 23.
    Kulin LI, Meijerink NL and Starck P (1988) Pure & Appl Chem 60 9: 1403Google Scholar
  24. 24.
    Elston CT (1972) US Pat 3,645,992Google Scholar
  25. 25.
    Wild L, Ryle TR and Knobeloch DC (1982) Polym Preprint Am Chem Soc 23: 133Google Scholar
  26. 26.
    Mirabella FM Jr and Ford EA (1987) J Polym Sci Polym Phys Ed 25: 777Google Scholar
  27. 27.
    Karoglanian S and Harrison IR (1989) Am Chem Soc Proceedings Pol Mat Sci and Eng 61: 748Google Scholar
  28. 28.
    Mathot VBF (1984) PRI and SPE Polycon '84 LLDPE papers and Proceedings 1Google Scholar
  29. 29.
    Wilfong D and Knight GW (1989) Am Chem Soc Proceedings Pol Mat Sci and Eng 61: 743Google Scholar
  30. 30.
    Cady LD (1977) Plast Eng 43 (1): 25Google Scholar
  31. 31.
    Natta G, Mazzanti G, Crespi G and Moraglio G (1957) Chim Ind (Milan) 39: 275Google Scholar
  32. 32.
    Kawamura H, Hayashi T, Inoue Y and Chujo R (1989) Macromols 22: 2181CrossRefGoogle Scholar
  33. 33.
    Doi Y, Suzuki E and Keili T (1981) Makromol Chem Rapid Commun 2: 293CrossRefGoogle Scholar
  34. 34.
    Kakugo M, Miyatake T, Mizunuma K and Kawai Y (1988) Macromols 21: 2309CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Leslie Wild
    • 1
  • G. Glöckner
    • 2
  1. 1.Research Scientist Quantum Chemical Corporation USI Division Research and DevelopmentCincinnatiUSA
  2. 2.Technische Universität Dresden Sektion ChemieDresdenFRG

Personalised recommendations