Comments on helioseismic inference

  • Douglas Gough
Part V Inverse Problems of Solar Oscillations
Part of the Lecture Notes in Physics book series (LNP, volume 367)


Helioseismic inference can be made within a wide spectrum of sophistication, from arguments based on the results of very simple and highly idealized model problems which depend on specific limited aspects of the data to a variety of formal numerical inversions of all the data that are available. The idealized problems are relatively simple to analyze, and provide a tool for making immediate qualitative and sometimes even quantitative estimates of certain aspects of the structure of the sun. If well chosen, they are likely to add substantially to our understanding of the situation; indeed, they can be an extremely useful guide to designing the more formal techniques which, though numerically more precise, are frequently also more opaque. Therefore it is often prudent to utilize methods throughout the entire spectrum. In this lecture a selection of the techniques for making immediate inferences will be discussed, and illustrated with examples of topical interest.


Sound Speed Convection Zone Solar Model Buoyancy Frequency Ionization Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (National Bureau of Standards, Washington DC).Google Scholar
  2. Ando, H., and Osaki, Y. 1975, Publ. Astron. Soc. Japan, 27, 581.Google Scholar
  3. Balmforth, N.J., and Gough, D.O. 1990, Astrophys. J., in press.Google Scholar
  4. Campbell, W.R., and Roberts, B. 1989, Astrophys. J., 338, 538.Google Scholar
  5. Chandrasekhar, S. 1964, Astrophys. J., 139, 664.CrossRefGoogle Scholar
  6. Christensen-Dalsgaard, J., Cooper, A.J., and Gough, D.O. 1983, Monthly Notices Roy. Astron. Soc., 203, 165.Google Scholar
  7. Christensen-Dalsgaard, J., and Gough, D.O. 1980, Nature, 288, 544.CrossRefGoogle Scholar
  8. Christensen-Dalsgaard, J., Gough, D.O., and Pérez-Hernandez, F. 1988, Monthly Notices Roy. Astron. Soc., 235, 875.Google Scholar
  9. Däppen, W., and Gough, D.O. 1986, in Seismology of the Sun and the Distant Stars, ed. D.O. Gough (Reidel, Dordrecht), p.275.Google Scholar
  10. Deubner, F.-L. 1975, Astron. Astrophys., 44, 371.Google Scholar
  11. Duvall, T.L., Jr. 1982, Nature, 300, 242.CrossRefGoogle Scholar
  12. Duvall, T.L., Jr., Harvey, J.W., and Pomerantz, M. 1986, Nature, 321, 500.CrossRefGoogle Scholar
  13. Dziembowski, W.A., and Gough, D.O. 1990, in preparation.Google Scholar
  14. Gough, D.O. 1976, in The Energy Balance and Hydrodynamics of the Solar Chromosphere and Corona, ed. R.M. Bonnet and P. Delache (G. de Bussac, Clermont-Ferrand), p.3.Google Scholar
  15. Gough, D.O. 1981, in Variations of the Solar Constant, ed. S. Sofia (NASA Publ., Washington DC), p.185.Google Scholar
  16. Gough, D.O. 1984, Phil. Trans. R. Soc. London, A 313, 27.Google Scholar
  17. Gough, D.O. 1990, in Dynamiques des Fluides Astrophysiques, ed. J.-P. Zahn and J. Zinn-Justin (Elsevier), in press.Google Scholar
  18. Gough, D.O., and Kosovichev, A.G. 1988, in Seismology of the Sun and Sun-like Stars, ed. E.J. Rolfe (ESA SP-286, Noordwijk), p.47.Google Scholar
  19. Gough, D.O., and Thompson, M.J. 1988, in Advances in Helio-and Asteroseismology, ed. J. Christensen-Dalsgaard and S. Frandsen (Reidel, Dordrecht), p.175.Google Scholar
  20. Gough, D.O., and Thompson, M.J. 1990, Monthly Notices Roy. Astron. Soc., 242, 25.Google Scholar
  21. Keller, J.B., and Rubinow, S.I. 1960, Ann. Phys., 9, 24.CrossRefGoogle Scholar
  22. Kosovichev, A.G., and Parchevskii, K.V. 1988, Soviet Astron. Letters, 14(3), 201.Google Scholar
  23. Kuhn, J. 1988a, Astrophys. J. Letters, 331, L131.Google Scholar
  24. Kuhn, J. 1988b, in Seismology of the Sun and Sun-like Stars, ed. E.J. Rolfe (ESA SP-286, Noordwijk), p.87.Google Scholar
  25. Kuhn, J.R., Libbrecht, K.G., and Dicke, R.H. 1988, Science, 242, 908.Google Scholar
  26. Lamb, H. 1908, Proc. London Math. Soc., 7, 122.Google Scholar
  27. Lamb, H. 1932, Hydrodynamics (Sixth Edition) (Cambridge Univ. Press, Cambridge).Google Scholar
  28. Ledoux, P., and Walraven, T. 1958, in Handbuch der Physik Bd. 51, ed. S. Flügge (Springer, Berlin), p.353.Google Scholar
  29. Libbrecht, K.G., and Woodard, M.F. 1990, these proceedings.Google Scholar
  30. Lynden-Bell, D., and Ostriker, J. 1967, Monthly Notices Roy. Astron. Soc., 136, 293.Google Scholar
  31. Rayleigh 1896, The Theory of Sound (Cambridge Univ. Press, Cambridge).Google Scholar
  32. Shibahashi, H. 1979, Publ. Astron. Soc. Japan, 31, 87.Google Scholar
  33. Shibahashi, H. 1990, these proceedings.Google Scholar
  34. Smeyers, P., and Ruymaekers, E. 1990, in these proceedings.Google Scholar
  35. Spiegel, E.A., and Unno, W. 1962, Publ. Astron. Soc. Japan, 14, 28.Google Scholar
  36. Tassoul, M. 1980, Astrophys. J. Suppl., 43, 469.CrossRefGoogle Scholar
  37. Unno, W., Osaki, Y., Ando, H., Saio, H., and Shibahashi, H. 1989, Nonradial Oscillations of Stars (Second Edition) (Univ. of Tokyo Press, Tokyo).Google Scholar
  38. Vandakurov, Yu. V. 1967, Astron. Zh., 44, 786.Google Scholar
  39. Willson R.C. and Hudson, H.S. 1988, Nature, 332, 810.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Douglas Gough
    • 1
    • 2
  1. 1.Institute of Astronomy and Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeUK
  2. 2.Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations