Advertisement

Some problems in low frequency solar radio physics

  • N. Gopalswamy
  • M. R. Kundu
III. Low Frequency Solar System Astronomy
Part of the Lecture Notes in Physics book series (LNP, volume 362)

Abstract

Several important problems in solar radio physics can be attacked using the high spatial resolution observations from a low frequency space array, as the problem of ionospheric refraction does not exist. Noise storms are believed to occur in closed magnetic loops due to trapped superthermal particles. Recent radioheliograph observations suggest such a magnetic field topology up to altitudes of about 40 MHz emission. The problem of relative locations and sources of the storm continuum and bursts can be effectively studied by imaging them with higher spatial resolution. Interplanetary type II bursts are observed from heights above ~ 10 R while coronal type II bursts are observed from heights less than ~ 3 R. Observations filling this gap have important implications for the understanding of solar-terrestrial relations through shocks and mass ejections.

Keywords

Solar Phys Blast Wave Langmuir Wave Superthermal Electron Open Field Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sheridan, K.V.: 1970, Proc. Astron. Soc. Australia 1, 138.Google Scholar
  2. 2.
    Gopalswamy, N. and Kundu, M.R.: 1989, Solar Phys. 122, 145.CrossRefGoogle Scholar
  3. 3.
    Wild, J.P.: 1967, Proc. IREE Australia 9, 279.Google Scholar
  4. 4.
    Kundu, M.R., Erickson, W.C., Gergely, T.E., Mahoney, M.J., and Turner, P.J.: 1983, Solar Phys. 83, 365.CrossRefGoogle Scholar
  5. 5.
    Stone, R.G., Cane, H.V., and Bougeret, J.-L.: 1984 in STIP Symposium on Solar Interplanetary Intervals, eds. M.A. Shea et al., pp.371-382, Engineering International, Huntsville.Google Scholar
  6. 6.
    Fainberg, J. and Stone, R.G.: 1971, Astrophys. J. 164, L123.CrossRefGoogle Scholar
  7. 7.
    Melrose, D.B.: 1980, Solar Phys. 67, 357.CrossRefGoogle Scholar
  8. 8.
    Levin, B.N.: 1982, Astron. Astrophys. 111, 71.Google Scholar
  9. 9.
    Suzuki, S.: 1961, Ann. Tokyo Astron. Obs. 7, 75; Kundu, M.R. and Gopalswamy, N.: 1989, Solar Phys. (in press).Google Scholar
  10. 10.
    Daigne, G.: 1968, Nature 220, 567.Google Scholar
  11. 11.
    Kerdraon, A.: 1979, Astron. Astrophys. 71, 266.Google Scholar
  12. 12.
    Wagner, W.J.: 1984, Ann. Rev. Astron. Astrophys. 22, 267.CrossRefGoogle Scholar
  13. 13.
    Kundu, M.R., Gopalswamy, N., White, S., Cargill, P., Sehmahl, E.J. and Hildner, E.: 1989, Astrophys. J. 347, 505.CrossRefGoogle Scholar
  14. 14.
    Gopalswamy, N. and Kundu, M.R.: 1987, Solar Phys. 114, 347.CrossRefGoogle Scholar
  15. 15.
    Robinson, R.D., Stewart, R.T., and Cane, H.V.: 1984, Solar Phys. 91, 159.CrossRefGoogle Scholar
  16. 16.
    Joselyn, J.A. and McIntosh, P.I.: 1981, J. Geophys. Res. 86, 4555.Google Scholar
  17. 17.
    Wright, C.S. and McNamara, L.F.: 1983, Solar Phys. 87, 401.CrossRefGoogle Scholar
  18. 18.
    Gopalswamy, N. and Kundu, M.R.: 1987, Solar Phys. 111, 347.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • N. Gopalswamy
    • 1
  • M. R. Kundu
    • 1
  1. 1.Astronomy ProgramUniversity of MarylandCollege Park

Personalised recommendations