Sequential representation of primitive recursive functions, and complexity classes

  • Elisabeth Wette
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 440)


Starting from the idea that simple functions will show some regular behaviour, we introduce the notion of sequential representation to formalize a nonuniform way of decribing such regularities, e.g. periodically repeating sequences of values. In order to obtain classes of sequentially represented functions, general conditions are given that guarantee closure under substitution and (restricted forms of) primitive recursion. Use of several restrictions for verification as well as suitable reduction methods yield specifications of classes of primitive recursive functions which contain P or PSPACE. Any precise complexity results, however, seem to require additional investigations, and remain open questions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bel 79]
    Bel'tyukov, A.P.: A machine description and the hierarchy of initial Grzegorczyk classes, Transl. Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Stekl. AN SSSR 88 (1979), pp. 30–46Google Scholar
  2. [Cob 64]
    Cobham, A.: The intrinsic computational complexity of functions, ICLMPS '64, North-Holland, Amsterdam (1964), pp. 24–30Google Scholar
  3. [Grz 53]
    Grzegorczyk, A.: Some classes of recursive functions, Rozprawy MatematiczneIV, Warszawa 1953Google Scholar
  4. [KBu 82]
    Kleine Büning, H.: Note on the ɛ*1 − ɛ*2 problem, ZMLG 28 (1982), pp. 277–284Google Scholar
  5. [Pet 51]
    Péter, R.: Rekursive Funktionen, Akadémiai Kiadó, Budapest 1951, 2nd rev. ed. 1957Google Scholar
  6. [Rit 63]
    Ritchie, R.W.: Classes of predictably computable functions, TAMS 106 (1963), pp. 139–173Google Scholar
  7. [Tho 72]
    Thompson, D.B.: Subrecursiveness: machine independent notions of computability in restricted time and storage, MST 6 (1972), pp. 3–15Google Scholar
  8. [Wag 79]
    Wagner, K.: Bounded recursion and complexity classes, MFCS '79, LNCS 74 (1979), pp. 492–498Google Scholar
  9. [WaWe 86]
    Wagner, K. & Wechsung, G.: Computational Complexity, D. Reidel, Dordrecht (1986), §10Google Scholar
  10. [Wet 89]
    Wette, E.: Sequentielle Darstellungen primitiv rekursiver Funktionen und Komplexitätsklassen, Dissertation, Duisburg (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Elisabeth Wette
    • 1
  1. 1.FB 11 — Fachgebiet Praktische InformatikUniversität — GH — DuisburgDuisburg 1West-Germany

Personalised recommendations