Effectively given information systems and domains

  • Manfred Droste
  • Rüdiger Göbel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 440)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

§7 References

  1. A1.
    S. Abramsky, Domain Theory and the Logic of Observables Properties, PhD Thesis, QMC, University of London, 1987.Google Scholar
  2. A2.
    S. Abramsky, Domain Theory In Logical Form, submitted to Ann. Pure and Appl. Logic (1988).Google Scholar
  3. BC.
    G. Berry and P.L. Curien, Sequential algorithms on concrete data structures, Theoret. Comp. Sci. 20 (1982), 265–321.Google Scholar
  4. CDL.
    M. Coppo, M. Dezani, G. Longo, Applicative information systems, Note Scientifiche S-83-5, Febbraio 1983.Google Scholar
  5. CG.
    A.L.S. Corner, R. Göbel, Prescribing endomorphism algebras — A unified treatment, Proceed. London Math. Soc. (3) 50 (1985) 447–479.Google Scholar
  6. C.
    P.L. Curien, Categorical Combinators, Sequential Algorithms and Functional Programming, Research Notes in Theoretical Computer Science, Pitman, London 1986.Google Scholar
  7. D1.
    M. Droste, Event structures and domains, Theoret. Comp. Sci. 68 (1989), 37–47.Google Scholar
  8. D2.
    M. Droste, Recursive domain equations for concrete data structures, Information and Computation 82 (1989), 65–80.Google Scholar
  9. DG.
    M. Droste, R. Göbel, Non-deterministic information systems and their domains, Theoret. Comp. Sci. 73 (1989), to appear.Google Scholar
  10. EL.
    E. Engeler, P. Läuchli, "Berechnungstheorie für Informatiker", Teubner Stuttgart 1988.Google Scholar
  11. KP.
    A. Kanda, D. Park, When are two effectively given domains identical? in: Springer LNCS 67 (1980) "Theor. Comp. Science, 4th GI Conference, Aachen 1979" (ed. K. Weihrauch) pp. 170–181.Google Scholar
  12. LW.
    K.G. Larsen and G. Winskel, Using information systems to solve recursive domain equations effectively, in: Semantics of Data Types, International Symposium Sophia-Antipolis 1984 (G. Kahn, D.B. MacQueen and G. Plotkin, eds.), Springer LNCS 173 (1984), pp. 109–129.Google Scholar
  13. P.
    L.C. Paulson, Logic and Computation, Interactive Proof with Cambridge LCF, Cambridge UP, Cambridge Tracts in Theoretical Computer Science 1987.Google Scholar
  14. Sc1.
    D.S. Scott, Outline of a mathematical Theory of computation, Technical Monograph PRG-2 (1970), Oxford.Google Scholar
  15. Sc2.
    D.S. Scott, Continuous lattices, Proc. 1971 Dalhousie Conference on Toposes, Algebraic Geometry and Logic, Springer LNM 274 (1971), pp. 97–136.Google Scholar
  16. Sc3.
    D.S. Scott, Domains for denotational semantics, Proc. 9th International Coll. on Automata, Languages and Programming, Aarhus, Springer LNCS 140 (1982), pp. 577–613.Google Scholar
  17. SS.
    D.S. Scott, C. Strachey, Toward a Mathematical Semantics for Computer Languages, Proc. Sympos. Computer Sci., Symposia Series 21 (1971).Google Scholar
  18. Sm1.
    M.B. Smyth, The largest cartesian closed category of domains, Theor. Comp. Sci. 27 (1983) 109–119.Google Scholar
  19. Sm2.
    M.B. Smyth, Effectively given domains, Theoretical Computer Science 5 (1977) 257–274.CrossRefGoogle Scholar
  20. SP.
    M.B. Smyth, G. Plotkin, The category—theoretic solution of recursive domain equations, Proc. 18th Symposium on Foundations of Computer Science. Providence, R.I., 1977.Google Scholar
  21. Sp.
    D. Spreen, Computable one—to—one enumerations of effective domains, Springer LNCS 298 (1988) "Mathematical Foundation of Programming Language Semantics" (eds. M. Main, A. Melton, M. Mislove, D. Schmidt), pp. 372–384.Google Scholar
  22. St.
    J. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Languages, MIT Press, Cambridge, Mass. 1977.Google Scholar
  23. V.
    S. Vickers, "Topology via Logic", Cambridge Univ. Press (1989).Google Scholar
  24. Wa.
    M. Wand, Fixed-point constructions in order-enriched categories, Research Report TR 23, Indiana University, 1975.Google Scholar
  25. Wi.
    G. Winskel, Event structures, in: Springer LNCS 255 (1987) pp. 325–392.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Manfred Droste
    • 1
  • Rüdiger Göbel
    • 1
  1. 1.Fachbereich 6 - MathematikUniversität GHS EssenEssen 1FRG

Personalised recommendations