Skip to main content

The complexity of subtheories of the existential linear theory of reals

  • Conference paper
  • First Online:
CSL '89 (CSL 1989)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 440))

Included in the following conference series:

  • 141 Accesses

Abstract

The linear theory consists of all sentences of signatur (0,1,+,<,k·_, k is a rational number) true in the model of real numbers. We shall prove that the existential linear theory of real numbers restricted to a quantifier free part of Krom formulas is NP-complete even for some restrictions on the structure of atoms.

In the case that the quantifier free part is a conjunction of atomic formulas we have nothing else than the linear optimation problem, which is P-complete. In the case of two variables per atomic formula the problem is in NC.

Also the case that all atoms are of the form Σ i a i x i c, such that c>0, is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. M. Ben'Or, D. Kozen, J. Reif, The complexity of elementary algebra and geometry, JCSS 32 (1986), pp. 251–264.

    Google Scholar 

  2. S. Cook, A taxonomy of problems with fast parallel algorithms, Information and Control 64 (1985), pp. 2–22.

    Article  Google Scholar 

  3. E. Dahlhaus, Reductions to NP-complete problems by interpretations, Logic and Machines: Decision Problems and Complexity, E. Boerger, G. Hasenjaeger, D. Roedding ed. (1983), LNCS 171, pp.357–365.

    Google Scholar 

  4. E. Dahlhaus, Skolem normal forms concerning the least fixpoint operator, Computation Theory and Logic, E. Boerger ed., LNCS 270, pp. 101–106.

    Google Scholar 

  5. D. Dobkin, R. Lipton, S. Reiss, Linear programming is log-space hard for P, Information Processing Letters 8 (1979), pp. 96–97.

    Google Scholar 

  6. S. Fortune, J. Wyllie,Parallelism in random access machines, 10th STOC (1978), pp. 114–118.

    Google Scholar 

  7. , M. Garey, D. Johnson, Computers and Intractability, Freeman and Co., San Francisco, 1978.

    Google Scholar 

  8. J. v. z. Gathen, M. Sieveking, Weitere zum Erfuellungsproblem aequivalente kombinatorische Aufgaben, Komplexität von Entscheidungsproblemen, E. Specker V. Strassen ed., LNCS 43 (1976).

    Google Scholar 

  9. , L. Goldschlager, The monotone and the planar circuit value problems are log space complete for P, SIGACT News 9 (1977), pp. 25–29.

    Article  Google Scholar 

  10. N. Jones, W. Laaser, Complete problems for deterministic polynomial time, TCS 3 (1976), pp. 105–117.

    Google Scholar 

  11. N. Karmakar, A new polynomial time algorithm for linear programming, Combinatorica 4 (1984), pp.373–395.

    Google Scholar 

  12. L. Khachiyan, A polynomial time algorithm for linear programming, Soviet Mathematics Doklady 20 (1979), pp.191–194.

    Google Scholar 

  13. R. Ladner, The circuit value problem is logspace complete for P, SIGACT News 7 (1975), pp. 18–20.

    Article  Google Scholar 

  14. J. Lassez, K. McAloon, Independence of negative constraints, TAP-SOFT 89, vol. 1, J. Diaz, F. Orejas ed., LNCS 351, pp. 19–27.

    Google Scholar 

  15. T. Lengauer, On the solution of inequality systems relevant to IC-layout, Journal of algorithms 5 (1984), pp. 408–421.

    Google Scholar 

  16. G. Lueker, N. Meggido, V. Ramachandran, Linear programming with two variables per inequality in poly-log time, 18t h STOC (1986), pp. 196–205.

    Google Scholar 

  17. L. Lovász, P. Gács, Some remarks on generalized spectra, ZML 23 (1977), pp. 547–554.

    Google Scholar 

  18. A. Schrijver, Disjoint homotopic trees in a planar graph, preprint.

    Google Scholar 

  19. H. Wagener, Parallel computational geometry, exploiting polygonal order for maximally parallel algorithms, Doctoral Dissertation, Technical University of Berlin, Dept. of Computer Science.

    Google Scholar 

  20. V. Weispfenning, The complexity of linear problems in fields, Journal of Symbolic Computation 5 (1988), pp. 3–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Egon Börger Hans Kleine Büning Michael M. Richter

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dahlhaus, E. (1990). The complexity of subtheories of the existential linear theory of reals. In: Börger, E., Büning, H.K., Richter, M.M. (eds) CSL '89. CSL 1989. Lecture Notes in Computer Science, vol 440. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52753-2_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-52753-2_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52753-4

  • Online ISBN: 978-3-540-47137-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics