Set-theoretic reductions of Hilbert's tenth problem

  • D. Cantone
  • V. Cutello
  • A. Policriti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 440)


Decision Procedure Satisfiability Problem Unordered Pair Integer Constant Quantifier Alternation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bör89]
    E. Börger. Computability, complexity, logic. North-Holland, Amsterdam, 1989.Google Scholar
  2. [BFOS81]
    M. Breban, A. Ferro, E.G. Omodeo, and J.T. Schwartz. Decision procedures for elementary sublanguages of set theory. II. Formulas involving restricted quantifiers, together with ordinal, integer, map, and domain notions. Comm. Pure App. Math., XXXIV:177–195, 1981.Google Scholar
  3. [Can90]
    C. Cantone. A survey of computable set theory. Le Matematiche, to appear.Google Scholar
  4. [CC89]
    D. Cantone and V. Cutello. A decision procedure for set-theoretic formulae involving rank and cardinality comparison. Proceedings of 3rd Italian Conference on Theoretical Computer Science, Mantova, pp. 150–163, 1989.Google Scholar
  5. [CFO]
    D. Cantone, A. Ferro, and E.G. Omodeo. Computable Set Theory. Oxford University Press, to appear.Google Scholar
  6. [FOS80a]
    A. Ferro, E.G. Omodeo, and J.T. Schwartz. Decision procedures for elementary sublanguages of set theory. I. Multi-level syllogistic and some extensions. Comm. Pure App. Math., XXXIII:599–608, 1980.Google Scholar
  7. [Jec78]
    T.J. Jech. Set theory. Academic Press, New York, 1978.Google Scholar
  8. [Lev79]
    A. Levy. Basic Set Theory. Springer-Verlag, 1979.Google Scholar
  9. [Mat70]
    Y. Matijasevič. Enumerable sets are Diphantine sets. Soviet Math. Doklady, 11:354–357, 1970.Google Scholar
  10. [PP88]
    F. Parlamento and A. Policriti. Decision procedures for elementary sublanguages of set theory. IX. Unsolvability of the decision problem for a restricted subclass of the Δ0-formulas in set theory. Comm. Pure App. Math., XLI:221–251, 1988.Google Scholar
  11. [Sch79]
    W. Schönfeld. An undecidability result for relation algebras. JSL, 44:111–115, 1979. Refinement in: Gleichungen in der Algebra der binären Relationen. Habilitationsschrift, §5, Minerva Publikation, München 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • D. Cantone
    • 1
    • 2
  • V. Cutello
    • 1
    • 2
  • A. Policriti
    • 1
    • 3
  1. 1.Computer Science Department Courant Institute of Mathematical SciencesNew York UniversityNew York
  2. 2.Dipartimento di MatematicaUniversità di CataniaCataniaItaly
  3. 3.Dipartimento di Matematica e InformaticaUniversità di UdineUdineItaly

Personalised recommendations