A syntactic theory of transparent parameterization

  • Stanley Jefferson
  • Shinn-Der Lee
  • Daniel P. Friedman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 432)


We present a calculus for Lamping's programming system of transparent and orthogonal parameterization. The calculus is shown to be consistent, to have a standardization procedure, and to correspond with an operational semantics obtained from the denotational semantics by viewing the semantic equations as state transition rules. Lamping's system is remarkable because it is small, having only four constructions, yet it can easily express a wide variety of parameterization mechanisms including lexical variables, dynamic variables, procedure calls, first-class environments, modules, and method lookup and inheritance mechanisms of object-oriented systems. Due to its orthogonal and transparent parameterization mechanisms, every object, including data and code, in Lamping's programming system can be parameterized, and a parameterized object can be manipulated as if it were a ground object. This blurs the distinction between data and code, allowing one to think of data as code and vice versa.


Operational Semantic Data Dist Denotational Semantic Ground Object Lexical Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, second edition, 1984.Google Scholar
  2. [2]
    Matthias Felleisen and Daniel P. Friedman. A syntactic theory of sequential state. Theoretical Computer Science, 69(3):243–287, 1989.CrossRefGoogle Scholar
  3. [3]
    Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. A syntactic theory of sequential control. Theoretical Computer Science, 52(3):205–237, 1987.CrossRefGoogle Scholar
  4. [4]
    John O. Lamping. A unified system of parameterization for programming languages. In 1988 ACM Conference On Lisp and Functional Programming, pages 316–326, July 1988.Google Scholar
  5. [5]
    John O. Lamping. A Unified System Of Parameterization For Programming Languages. PhD thesis, Stanford University, April 1988.Google Scholar
  6. [6]
    Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical computer Science, 1:125–159, 1975.CrossRefGoogle Scholar
  7. [7]
    Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT Press, 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Stanley Jefferson
    • 1
  • Shinn-Der Lee
    • 1
  • Daniel P. Friedman
    • 1
  1. 1.Computer Science DepartmentIndiana UniversityBloomington

Personalised recommendations