Resolution and Type Theory

  • Leen Helmink
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 432)


In this paper, an inference mechanism is proposed for proof construction in Constructive Type Theory. An interactive system that implements this method has been developed.

Key words

Type Theory Calculus of Constructions Typed Lambda Calculus Natural Deduction 


  1. [Ah85]
    Ahn, R.M.C. Some extensions to Prolog based on AUTOMATH. Internal Philips technical note nr. 173/85, 1985.Google Scholar
  2. [Ba81]
    Barendregt, H. The Lambda-Calculus: Its Syntax and Semantics. North-Holland, 1981.Google Scholar
  3. [Br72]
    De Bruijn, N.G. Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem. Indag. Math. 34, 5, pp 381–392, 1972.Google Scholar
  4. [Br73]
    De Bruijn, N.G. A survey of the project Automath. In: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalisms. (Seldin & Hindley, Eds.), Academic Press, 1980.Google Scholar
  5. [Co86]
    Constable, R.L. et al. Implementing Mathematics with the Nuprl Proof Development System. Prentice Hall, 1986.Google Scholar
  6. [Co85]
    Coquand, T. Une Theory des Constructions. Thèse de troisième cycle, Université de Paris VII, 1985.Google Scholar
  7. [Cq85]
    Coquand, T. & Huet, G.P. Constructions: A Higher Order Proof System for Mechanizing Mathematics. EUROCAL85, Linz, Springer-Verlag LNCS 203, 1985.Google Scholar
  8. [Da80]
    van Daalen, D.T. The Language Theory of Automath. Ph. D. Dissertation, Eindhoven University of Technology, Dept of Mathematics, 1980.Google Scholar
  9. [Fe88]
    Felty, A. & Miller, D.A. Specifying Theorem Provers in a Higher-Order Logic Programming Language. CADE-9, Argonne, pp 61–80, Springer-Verlag LNCS 310, 1988.Google Scholar
  10. [Fo83]
    Fortune, S. et al. The Expressiveness of Simple and Second-Order Type Structures. J. ACM 30, 1 (Jan.), pp 151–185, 1983.CrossRefGoogle Scholar
  11. [Go79]
    Gordon, M.J., Milner, R. & Wadsworth, C.P. Edingburgh LCF. Springer-Verlag LNCS 78, 1979.Google Scholar
  12. [Ha87]
    Harper, R., Honsell, F. & Plotkin, G. A Framework for defining logics. Second Annual Symposium on Logic in Computer Science, Ithaca, IEEE, pp. 194–204, 1987.Google Scholar
  13. [Ha89]
    Harper, R. & Pollack, R. Type Checking, Universe Polymorphism, and Typical Ambiguity in the Calculus of Constructions. Tapsoft '89, Barcelona, Springer-Verlag LNCS 352, Volume 2, 1989.Google Scholar
  14. [He88]
    Helmink, L. & Ahn, R. Goal Directed Proof Construction in Type Theory. Internal Philips technical note nr. 229/88, 1988. Also available as document 28.3 of Esprit project 1222: ‘Genesis'.Google Scholar
  15. [He89]
    Helmink, L. & Tien, M. van. Genesis Constructive Logic Machine: User's Guide. Available as document 28.5 of Esprit project 1222: ‘Genesis'.Google Scholar
  16. [Hu75]
    Huet, G.P. A Unification Algorithm for Typed λ-calculus. Theoret. Comput. Sci. Vol.1, pp. 27–57, 1975.CrossRefGoogle Scholar
  17. [Hu87]
    Huet, G.P. Induction Principles Formalized in the Calculus of Constructions. Tapsoft '87, Pisa, Springer-Verlag LNCS 250, Volume 1, 1987.Google Scholar
  18. [Ju76]
    Jutting, L.S. A Translation of Landau's ”Grundlagen” in AUTOMATH. Ph.D. Dissertation, Eindhoven University of Technology, Dept of Mathematics, 1976.Google Scholar
  19. [Ju86]
    Jutting, L.S. Normalization in Coquand's system. Internal Philips technical note nr. 156/88, 1988.Google Scholar
  20. [Ma84]
    Martin-Löf, P. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.Google Scholar
  21. [Na88]
    Nadathur G. & Miller, D.A. An overview of λProlog. In: Logic Programming: Proceedings of the Fifth International Conference and Symposium. (Kowalski & Bowen, Eds.), MIT Press, Cambridge, Massachusetts, Volume 1, pp 820–827, August 1988.Google Scholar
  22. [Pa86]
    Paulson, L.C. Natural Deduction as Higher-Order Resolution. J. Logic Programming 3, pp 237–258, 1986.CrossRefGoogle Scholar
  23. [Pa89]
    Paulson, L.C. The Foundation of a Generic Theorem Prover. J. Automated Reasoning 5, pp 363–379, 1989.CrossRefGoogle Scholar
  24. [Pf89]
    Pfenning, F. Elf: a language for logic definition and verified meta-programming. Fourth Annual Symposium on Logic in Computer Science, IEEE, pp 313–322, 1989.Google Scholar
  25. [Ro65]
    Robinson, J.A. A Machine Oriented Logic Based on the Resolution Principle. J. ACM 12, 1 (Jan.), 23–49, 1965.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Leen Helmink
    • 1
  1. 1.Philips Research LaboratoriesEindhoventhe Netherlands

Personalised recommendations