Types in lambda calculi and programming languages

  • Henk Barendregt
  • Kees Hemerik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 432)


  1. Bakel, S. van. [1990] Complete restrictions of the intersection type discipline. To appear in Theoretical Computer Science.Google Scholar
  2. Barendregt, H.P. [1984] The lambda calculus, its syntax and semantics, 2-nd revised edition, North Holland Publishing Company, Amsterdam, 1984.Google Scholar
  3. [1989] Introduction to generalised type systems, Proceedings 3rd Italian Conference on Theoretical Computer Science, (Eds. A. Bertoni e.a.), World Scientific, Singapore, 1–37.Google Scholar
  4. [1990] Functional programming and Lambda Calculus. To appear in Handbook of Theoretical Computer Science, (Ed. J. van Leeuwen), North Holland, Amsterdam.Google Scholar
  5. [199-] Lambda calculi with types. To appear in: Handbook of Logic in Computer Science, (Eds. S. Abramsky, D. Gabbai and T. Maibaum), Oxford University Press, Oxford.Google Scholar
  6. Barendregt, H.P., Coppo, M., Dezani-Ciancaglini, M. [1983] A filter lambda model and the completeness of type assignment, Journal of Symbolic Logic, 48, 4, 931–940.Google Scholar
  7. Barendregt, H.P. and M. van Leeuwen [1985] Functional programming and the language TALE, in: Lecture Notes in Computer Science 224, Springer, Berlin, 122–208.Google Scholar
  8. Barendregt, H.P., Dekkers, W. [199-] Typed lambda calculi, syntax and semantics, to appear.Google Scholar
  9. Boehm, H.J. [1989] Type inference in the Presence of Type abstraction, in: SIGPLAN 89 Conference on Programming Languages Design and Implementation, Portland, Oregon 1989.Google Scholar
  10. Burstall, R., MacQueen, D., Sanella, D. [1980] HOPE: An experimental applicative language, report CSR-62-80, Edinburgh University.Google Scholar
  11. Cardelli, L., Wegner, P. [1985] On understanding types, data abstraction, and polymorphism, Computing Surveys 17, 4, 471–522.Google Scholar
  12. Cardone, F., Coppo, M. [1990] Type inference with recursive types: Syntax and semantics. To appear in Information and Computation.Google Scholar
  13. Church, A. [1941] A formalisation of the simple theory of types, Journal of Symbolic Logic 5, 56–68.Google Scholar
  14. [1941a] The calculi of lambda conversion, Princeton University Press; Reprinted 1963 by University Microfilms Inc., Ann Arbor, Michigan, USA.Google Scholar
  15. Constable, R.L. et al. [1986] Implementing mathematics with the nuprl proof development system, Prentice-Hall Inc., Englewood Cliffs, New Jersey.Google Scholar
  16. Coquand, T. and G. Huet [1988] The calculus of constructions, Information and Computation 76, 95–120.CrossRefGoogle Scholar
  17. Coquand, T. et al. [1989] The calculus of constructions, documentation and usersguide, version 4.10, INRIA, Rocquencourt, France.Google Scholar
  18. Curry, H.B. [1934] Functionality in combinatory logic, Proc. Nat. Acad. Science USA 20, 584–590.Google Scholar
  19. Damas, L. [1982] Principal type schemes for functional programming, Proceedings of the 9th ACM-POPL, 207–212.Google Scholar
  20. Girard, J.-Y. [1972] Interprétation fonctionelle et élimination des coupures dans l'arithmétique d'ordre superieur. Ph.D. Thesis, Université Paris VII.Google Scholar
  21. Gordon, M.J.C., Milner, R., Wadsworth, C. [1979] A mechanical logic of computation. Edinburgh LCF, Lecture Notes in Computer Science 78, Springer.Google Scholar
  22. Harper, R., MacQueen, D., Milner, R. [1986] Standard ML, Report ECS-LFCS-86-2, Edinburgh University.Google Scholar
  23. Harper, R., F. Honsell and G. Plotkin, [1987] A framework for defining logics, Proceedings second Symp. Logic in Computer Science (Ithaca, N. Y.), IEEE, Washington DC, 194–204.Google Scholar
  24. Hindley, J.R. [1969] The principal type-scheme of an object in combinatory logic, Trans. Am. Math. Soc. 146, 29–60.Google Scholar
  25. Kfoury, A.J., Tiuryn, J., Uryczyn, P. [1988] A proper extension of ML with an effective type assigment, Proceedings of the 15th ACM, POPL.Google Scholar
  26. Kfoury, A.J., Tiuryn, J., Uryczyn, P. [1989] Computational consequences and partial solutions of a generalized unification problem. Proceedings of the 4th IEEE-LICS, 98–105.Google Scholar
  27. Lehmann, D.J. [1977] Modes in ALGOL Y. Proceedings 5th Annual I.I.I. conference, may 1977, Guidel, France, Published by INRIA, 1977.Google Scholar
  28. McCracken, N.D. [1984] The typechecking of programs with implicit type structure, Semantics of data types, (Eds. G. Kahn e.a.), Lecture Notes in Computer Science 173, Springer, 301–315.Google Scholar
  29. MacQueen, D., Plotkin, G., Sethi, R. [1986] An ideal model for recursive polymorphic types, Information and control 71, 95–130.CrossRefGoogle Scholar
  30. Mendler, N.P. [1987] Inductive types and type constraints in second-order lambda calculus, Proceedings of the 2nd symposium of LICS.Google Scholar
  31. Milner, R. [1978] A theory of type polymorphism in programming, Journal of Comp. Syst. Sci., 17, 348–375.CrossRefGoogle Scholar
  32. Morris, J.H. [1968] Lambda calculus models of programming languages, MAC-TR-57, Project MAC, MIT, Cambridge, Massachussets.Google Scholar
  33. Mycroft, A. [1984] Polymorphic type schemes for functional programs, Proceedings of the 9th ACM POPL.Google Scholar
  34. O'Toole, J.W., Gifford, D.K. [1989] Type reconstruction with first-class polymorphic values SIGPLAN 89 Conference on Programming Languages Design and Implementation, Portland, Oregon 1989.Google Scholar
  35. Pfenning, F. [1988] Partial polymorphic type inference and higher-order unification, Proceedings of the ACM LISP and Functional Programming Conference.Google Scholar
  36. Reynolds, J.C. [1974] Towards a theory of type structure, in: Proc. of the Colloque sur la Programmation, Paris, Lecture Notes in Computer Science 19, Springer, 408–425.Google Scholar
  37. [1985] Three approaches to type structure, in: Mathematical Foundations of Software Development (Eds. Ehring e.a.), Lecture Notes in Computer Science 185, Springer, Berlin, 97–138.Google Scholar
  38. [1989] Synctactic control of interference, part 2.Google Scholar
  39. Tennent, R.D. [1989] Elementary data structures in ALGOL-like languages. Science of Computer Programming 13 (1989/90), 73–110.CrossRefMathSciNetGoogle Scholar
  40. Turner, D. [1985] Miranda, a non-strict functional language with polymorphic types, in: Functional programming languages and computer architecture, Nancy, Lecture Notes in Computer Science 201, Springer, Berlin, 1–16.Google Scholar
  41. Wand, M. [1987] A simple algorithm and proof for type inference, Fundamenta Informaticae X, 115–122.Google Scholar
  42. Wijngaarden, van, A. Mailloux, B, Peck, J.E.L., Koster, C.H.A. [1969] Report on the algorithmic language ALGOL 68, Num. Math. 14, 79–218.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Henk Barendregt
    • 1
  • Kees Hemerik
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceUniversity NijmegenNijmegenThe Netherlands
  2. 2.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations