Skip to main content

Gem-Dihalocyclopropanes in organic synthesis

  • Conference paper
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 155))

Abstract

Gem-Dihalocyclopropanes belong to the most readily available cyclopropane derivatives known today. They have been shown to be extremely valuable starting materials for the preparation of cyclopropanes and cyclopropenes, they may be converted to bicyclobutane derivatives and spiropentanes, can lead to allenes and the higher cumulenes, cyclopentenes and cyclopentadienes, and many other classes of compounds, both hydrocarbon systems and derivatives with valuable functional groups. The article summarizes the preparative developments in the area of gem-dihalocyclopropane chemistry during the last decade.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. Gustavson G (1890) J. Prakt. Chem., Neue Folge 42: 495

    Google Scholar 

  2. Doering WvE, Hoffmann AK (1954) J. Am. Chem. Soc. 76: 6162

    Google Scholar 

  3. One of the numerous, more recent applications of this methodology — leading to novel polyspiranes — has been described by Fukuda Y, Yamamoto Y, Kimura K, Odaira Y (1979) Tetrahedron Lett. 877

    Google Scholar 

  4. Trost BM (1986) Topics Curr. Chem. 133: 5; cf. de Meijere A (1979) Angew. Chem. 91: 867; (1979) Angew. Chem. Int. Ed. Engl. 18: 809

    Google Scholar 

  5. Chinoporos E (1973) Chem. Rev. 63: 235

    Google Scholar 

  6. Parham WE, Schweizer EE (1963) Org. Reactions 13: 55

    Google Scholar 

  7. Jerosch-Herold B, Gaspar PP (1965) Fortschr. Chem. Forsch. 5: 89

    Google Scholar 

  8. Kirmse W (1971) Carbene chemistry, 2nd ed, Academic, New York

    Google Scholar 

  9. Closs GL In: Hart H, Karabatsos GJ (eds) Advances in alicyclic chemistry, vol 1 Academic, New York, p 53

    Google Scholar 

  10. Wendisch D (1971) In: Houben-Weyl-Müller, Methoden der organischen Chemie, vol IV/3, Thieme, Stuttgart; A new volume of the Houben-Weyl series has recently been published dealing with divalent carbon species: Regitz M, Hanack M (eds) (1989) Vol E 19, Niedervalente Kohlenstoffverbindungen Thieme, Stuttgart

    Google Scholar 

  11. Weyerstahl P (1983) In: Patai S (ed) The chemistry of functional groups, The chemistry of halides, pseudo-halides and azides, part 2, Wiley, New York, p 1451

    Google Scholar 

  12. Zefirov NS, Kazimirchik IV, Lukin KA (1985) The cycloaddition of dichlorocarbene to olefins, Nauka, Moscow, p 151

    Google Scholar 

  13. Keller WE (1986) Phase-transfer reactions, Thieme, Stuttgart, p 106

    Google Scholar 

  14. Haddon RC, Chichester SV, Stein SM, Marshall JH, Mujsce AM (1987) J. Org. Chem. 52: 711

    Google Scholar 

  15. Liebowitz SM, Johnson HJ (1986) Synth. Commun. 16: 1255

    Google Scholar 

  16. Krief A, Laboureur JL, Dumont W (1987) Tetrahedron Lett. 28: 1549

    Google Scholar 

  17. Perrett AT, Laurie VW (1975) J. Chem. Phys. 62: 2469

    Google Scholar 

  18. Dolbier WR, Piedrahita CA, Al-Sader BH (1979) Tetrahedron Lett. 2957

    Google Scholar 

  19. Dolbier WR, Odaniecz M, Gomulka E, Saskolski M, Koroniak H (1984) Tetrahedron 40: 3945

    Google Scholar 

  20. Flygare WH, Narath A, Gwinn WD (1962) J. Chem. Phys. 36: 200

    Google Scholar 

  21. Cole KC, Gilson DFR (1975) J. Mol. Struct. 28: 385

    Google Scholar 

  22. Alekseev NV, Bardsjan AP, Shostakowsky VM (1972) Zh. Struct. Khim. 13: 512

    Google Scholar 

  23. Skancke A, Flood E, Boggs J (1977) J. Mol. Struct. 40: 263

    Google Scholar 

  24. Skancke A (1977) J. Mol. Struct. 42: 235

    Google Scholar 

  25. Isogai K, Nishizawa N, Saito T, Sakai J (1983) Bull. Soc. Chem. Japan 56: 1556

    Google Scholar 

  26. Nefedov OM, Shafran RN (1965) Izv. Akad. Nauk, Ser. Khim. 538

    Google Scholar 

  27. Nefedov OM, Shafran RN, Novizkaya NN (1972) Zh. Org. Khim., 2075

    Google Scholar 

  28. Schuster DI, Lee FF (1965) Tetrahedron Lett. 4119

    Google Scholar 

  29. Oku A, Tsuji H, Yoshida M, Yoshiura N (1981) J. Am. Chem. Soc., 103: 1244

    Google Scholar 

  30. Oku A, Narada K, Yagi T, Shirahose Y (1983) J. Am. Chem. Soc., 105: 4400

    Google Scholar 

  31. Nefedov OM, Agaveljan AS (1974) Izv. Akad. Nauk. SSR, Ser. Khim 838

    Google Scholar 

  32. Mehta G, Kapoor SK (1974) J. Organomet. Chem. 80: 213

    Google Scholar 

  33. Jakushkina NI, Zacharova GA, Surmina LS, Bolesov IG (1980) Zh. Org. Khim. 16: 1834; (1980) J. Org. Chem. USSR 16: 1551

    Google Scholar 

  34. Djachenko AI, Korneva OS, Nefedov OM (1980) Izv. Akad. Nauk SSR, Ser. Khim 2432

    Google Scholar 

  35. Djachenko AI, Korneva OS, Nefedov OM (1982) Izv. Akad. Nauk SSR, Ser Khim. 2842

    Google Scholar 

  36. At elevated temperatures, e.g. in a high-boiling solvent, LiAlH4 can be used to fully reduce gem-dichlorocyclopropanes: Kaufmann D, Fick H-H, Schallner O, Spielmann W, Meyer L-U, Gölitz P, de Meijere A (1983) Chem. Ber. 116: 587

    Google Scholar 

  37. Jakushkina NI, Bolesov IG (1979) Zh. Organ. Khim. 15: 954; (1979) J. Org. Chem. USSR 15: 853. The use of tri-n-butylhydride as a reducing reagent has been reviewed recently: Neumann WP (1987) Synthesis 665. This summary includes a section on the selective reduction of gem-dihalocyclopropanes

    Google Scholar 

  38. Sydnes LK, Skattebøl L (1974) Tetrahedron Lett. 3703

    Google Scholar 

  39. Sydnes LK, Skattebøl L (1978) Acta Chem. Scand. B32: 632

    Google Scholar 

  40. Mirao T, Masunaga T, Ohshiro Y, Agawa T (1981) J. Org. Chem. 46: 3745

    Google Scholar 

  41. Djachenko AI, Korneva OS, Abramova NM, Nefedov OM (1984) Izv. Akad. Nauk SSR, Ser. Khim. 2818

    Google Scholar 

  42. Djachenko AI, Rudashewskaja TY, Korneva OS, Shteinshneider AY, Nefedov OM (1978) Izv. Akad. Nauk SSR, Ser. Khim. 2191

    Google Scholar 

  43. Djachenko AI, Korneva OS, Nefedov OM (1984) Izv. Akad. Nauk SSR, Ser. Khim. 2673

    Google Scholar 

  44. Jefford CW, Burger U, Laffer MH, Kabengele T (1973) Tetrahedron Lett. 2483

    Google Scholar 

  45. Christl M, Freitag G, Brüntrup G (1978) Chem. Ber. 111: 2307

    Google Scholar 

  46. Gaoni Y (1981) J. Org. Chem. 46: 4502

    Google Scholar 

  47. Kulinkovitch OG, Tishenko IG, Romashin JN (1984) Izv. Akad. Nauk SSR, Ser. Khim. 20: 1422

    Google Scholar 

  48. Meijs GF (1987) J. Org. Chem. 52: 3923

    Google Scholar 

  49. Meijs GF, Doyle IR (1985) J. Org. Chem. 50: 3713; cf. Oshima K, Shirajuji T, Yamamoto I, Nozaki H (1973) Bull. Chem. Soc. Japan 46: 1233

    Google Scholar 

  50. Ishihara T, Ontani E, Ando T (1975) J. Chem. Soc. Chem. Commun. 367

    Google Scholar 

  51. Yamanaka H, Yagi T, Teramura K (1971) J. Chem. Soc., Chem. Commun. 380

    Google Scholar 

  52. Sydnes L, Skattebøl L (1975) Tetrahedron Lett. 4603; cf. Sydnes L, Skattebøl L (1978) Acta Chem. Scand. B32: 632

    Google Scholar 

  53. Santelli C (1980) Tetrahedron Lett. 21: 2893

    Google Scholar 

  54. Barlett R (1978) J. Org. Chem. 43: 3500

    Google Scholar 

  55. Jorgensen E, Sydnes LK (1986) J. Org. Chem. 51: 1926

    Google Scholar 

  56. Kitatani K, Hijama T, Nozaki H (1975) J. Am. Chem. Soc. 97: 949

    Google Scholar 

  57. Hijama T, Kanakura A, Morizawa Y, Nozaki H (1982) Tetrahedron Lett. 23: 1279

    Google Scholar 

  58. Fermanovsky AA, Kosicina N, Bolesov IG (1981) Zh. Org. Khim. 17: 1778

    Google Scholar 

  59. Warner PM, Herold PD (1983) J. Org. Chem. 48: 5411

    Google Scholar 

  60. Warner PM, Chang S-C, Roszewski NJ (1985) Tetrahedron Lett. 26: 5371

    Google Scholar 

  61. Sander V, Weyerstahl P (1976) Angew. Chem. 88: 259; (1976) Angew. Chem. Int. Ed. Eng. 15: 244

    Google Scholar 

  62. Norden W, Sander V, Weyerstahl P (1983) Chem. Ber. 116: 3097

    Google Scholar 

  63. Kulinkovitch OG, Tishenko IG, Sviridov SV (1986) Zh. Organ. Khim. 22: 1416

    Google Scholar 

  64. Hijama T, Takehara S, Kitatani K, Nozaki H (1974) Tetrahedron Lett. 3295

    Google Scholar 

  65. Kulinkovitch OG, Tishchenko IG, Sviridov SV (1986) Zh. Organ. Khim. 22: 1416; (1986) J. Org. Chem. USSR 22: 1275

    Google Scholar 

  66. Braun M, Dammann R, Seebach D (1975) Chem. Ber. 108: 2368

    Google Scholar 

  67. Hopf H (1980) In: Patai S (ed) The chemistry of ketenes, allenes and related compounds, part 2, Wiley, New York p 779

    Google Scholar 

  68. Skattebøl L (1961) Tetrahedron Lett. 167

    Google Scholar 

  69. Skattebøl L (1963) Acta Chem. Scand. 17: 1683

    Google Scholar 

  70. Schuster HE, Coppola GM (1984) Allenes in organic synthesis, Wiley-Interscience, New York

    Google Scholar 

  71. Landor SR (ed) (1982) The chemistry of the allenes vols I–III, Academic, London; cf. Smadja W (1983) Chem. Rev., 83: 263

    Google Scholar 

  72. Pasto DJ (1984) Tetrahedron 40: 2805

    Google Scholar 

  73. Besides the alkyllithium compounds numerous other reagents have been used to initiate the dehalogenation, including such systems as CrCl3/LiAlH4 (Okuda Y, Hiyama T, Nozaki H (1977)) Tetrahedron Lett. 3829; and Cu(O)/isonitrile complexes (Crozet MP, Surzur JM, Jauffred R, Ghiglione C (1979)) Tetrahedron Lett. 3077. A more recent — and quite promising — method employs lithium or magnesium in tetrahydrofuran under ultrasonic irradiation (Yu T (1985)) Tetrahedron Lett. 26: 4231. — Especially for the preparation of conjugated and non-conjugated bisallenes the DMS route is the method of choice and very often the only way to prepare these interesting tetraenes in acceptable yields. When appropriately substituted, conjugated bisallenes may be either meso-or d,l-compounds (Kleveland K, Skattebøl L (1975) Acta Chem. Scand. B29: 827 and references cited therein; cf. Becher G, Skattebøl L (1979) Tetrahedron Lett. 1261

    Google Scholar 

  74. Roth WR, Schmidt T, Humbert H (1975) Chem. Ber. 108: 2171

    Google Scholar 

  75. Dewar MJS, Fonken GJ, Kirschner S, Minter SE (1975) J. Am. Chem. Soc. 97: 6750

    Google Scholar 

  76. Jakushkina NI, Bolesov IG (1979) Zh. Org. Khim 15: 311; (1979) J. Org. Chem. USSR 15: 270; cf. Slobodin YM, Egenburg IZ, Khachaturov AS (1974) Zh. Org. Khim. 10: 21; (1974) J. Org. Chem. USSR 10: 18; Kiselev MY, Kostikov RR, Molchanov AP (1989) Zh. Org. Khim 25: 870

    Google Scholar 

  77. Kostikov RR, Molchanov AP, Nagi SM (1983) Zh. Org. Khim. 19: 1437; (1983) J. Org. Chem. USSR 19: 1291; cf. Nefedov OM, Dolgii IE, Bulusheva EV (1978) Bull. Acad. Sc. USSR 27: 1271; Skattebøl L (1963) Tetrahedron Lett. 2175

    Google Scholar 

  78. Bee LK, Beeby J, Everett JW, Garratt PJ (1975) J. Org. Chem. 40: 2212; cf. Suvorova GN, Komendantov MI (1979) Zh. Organ. Khim. 15: 1435; (1979) J. Org. Chem. USSR 15: 1280

    Google Scholar 

  79. Blickle P, Hopf H (1978) Tetrahedron Lett. 449

    Google Scholar 

  80. Heldeweg RF, Hogeveen H (1978) J. Org. Chem. 43: 1916

    Google Scholar 

  81. Carlton JB, Levin RH (1976) Tetrahedron Lett. 3761

    Google Scholar 

  82. Melane RC, Schuster GB (1983) J. Org. Chem. 48: 810

    Google Scholar 

  83. Moore WR, Ward HR, Merritt RF (1961) J. Am. Chem. Soc. 83: 2019

    Google Scholar 

  84. Paquette LA, Zon G (1974) J. Am. Chem. Soc. 96: 203

    Google Scholar 

  85. Paquette LA, Browne AR, Chamont E, Blount JF (1980) J. Am. Chem. Soc. 102: 643; cf. Vogel E, Wassen J, Königshofen H, Müllen K, Oth JFM (1974) Angew. Chem. 86: 777; (1974) Angew. Chem. Int. Ed. Engl. 13: 732; Vogel E, Kerimis D, Allison NT, Zellerhoff R, Wassen J (1979) Angew. Chem. 91: 579, (1979) Angew. Chem. Int. Ed. Engl. 18: 545

    Google Scholar 

  86. Warner P, Chang S-C (1979) Tetrahedron Lett. 7141 and literature cited

    Google Scholar 

  87. Carlton JB, Levin RH, Clardy J (1976) J. Am. Chem. Soc. 98: 6068; cf. Ref. 80

    Google Scholar 

  88. Harnos S, Tivakornpannarei S, Waali EE (1986) Tetrahedron Lett. 27: 3701; cf. Moore WR (1972) J. Am. Chem. Soc. 94: 4753; Moore WR (1972) J. Am. Chem. Soc. 94: 4753; — For novel uses of 1,2-cyclohexadiene in organic synthesis see Christl M, Schreck M (1987) Angew. Chem. 99: 474, (1987) Angew. Chem. Int. Ed. Engl. 26: 449; Christl M, Schreck M (1987) Chem. Ber. 120: 915

    Google Scholar 

  89. Price JD, Johnson RP (1986) Tetrahedron Lett. 4679; cf. Gardner PD (1066) Tetrahedron Lett. 2793; Theoretical calculations concerning the stability of cycloallenes have been published by Angus RO, Schmidr MW, Johnson RP (1985) J. Am. Chem. Soc. 107: 532; cf. Johnson RP (1989) Chem. Rev. 89: 1111

    Google Scholar 

  90. Schreck M, Christl M (1987) Angew. Chem. 99: 720; (1987) Angew. Chem. Int. Ed. Engl. 26: 690. See also the references in this paper concerning previous reports on the dehalogenation of the 6,6-dihalo-3-oxa-bicyclo[3.10]hexanes

    Google Scholar 

  91. Christl M, Lang R, Lechner M (1980) Liebigs Ann. Chem. 980; cf. Christl M, Lechner M (1975) Angew. Chem. 87: 815, (1975) Angew. Chem. Internat. Ed. Engl. 14: 765. For a comprehensive study of the addition of dihalocarbenes to benzvalene see Christl M, Freitag G, Brüntrup G (1978) Chem. Ber. 111: 2307; Christl M, Herzog C, Brückner D, Lang R (1086) Chem. Ber. 119: 141

    Google Scholar 

  92. Taylor RT, Paquette LA (1975) Angew. Chem. 87: 488, (1975) Angew. Chem. Internat. Ed. Engl. 14: 496

    Google Scholar 

  93. Christl M (1981) Angew. Chem. 93: 515, (1981) Angew. Chem. Int. Ed. Engl. 20: 529

    Google Scholar 

  94. Moore WR, Hill JB (1970) Tetrahedron Lett. 4553; cf. Dehmlow EV, Ezimora GC (1978) Tetrahedron Lett 1599

    Google Scholar 

  95. Nilsen NO, Skattebøl L, Baird MS, Buxton SR, Slowey PD (1984) Tetrahedron Lett. 2887

    Google Scholar 

  96. Wiberg K, Walker FH (1982) J. Am. Chem. Soc. 104: 5239

    Google Scholar 

  97. Semmler K, Szeimies G, Belzner J (1985) J. Am. Chem. Soc. 107: 6410

    Google Scholar 

  98. Belzner J, Bunz U, Semmler K, Szeimies G, Opitz K, Schlüter AD (1989) Chem. Ber. 122: 397

    Google Scholar 

  99. Bunz U, Szeimies G (1989) Tetrahedron Lett. 30: 2087

    Google Scholar 

  100. Moore WR, Ward HR (1960) J. Org. Chem. 25: 2073

    Google Scholar 

  101. Warner P, Chang S, Powell DR, Jacobson RA (1981) Tetrahedron Lett. 22: 533

    Google Scholar 

  102. Cf. footnote in Lord RC, Wurrey CJ (1974) Spectrochimica Acta 30A: 915

    Google Scholar 

  103. Anderson HW (1972) Ph. D. thesis, MIT, Cambridge, Massachusetts; de Meijere A, Egge R (unpublished results); Egge R (1981) Diplomarbeit, Universität Hamburg

    Google Scholar 

  104. Köbrich G, Goert W (1968) Tetrahedron 24: 4327

    Google Scholar 

  105. Jones M, Petrillo EW (1969) Tetrahedron Lett. 3953; The addition of dichloro-and dibromocarbene to various 1,4-dihydrobenzenes and isotetralin has been investigated extensively by E. Vogel and co-workers, cf. Ippen J, Vogel E (1974) Angew. Chem. 86: 778, 780, (1974) Angew. Chem. Int. Ed. Engl. 13: 734, 736 and references cited therein. — For an interesting use of 7,7-dibromobicyclo[4.1.0]hept-3-ene during the preparation of the naturally occuring trop one nezukone see Banwell MG, Garatt GL, Richard CEF (1985) J. Chem. Soc., Chem. Commun. 514

    Google Scholar 

  106. Skattebøl L (1966) J. Org. Chem. 31: 2789

    Google Scholar 

  107. Brinker UH, Gomann K, Zorn R (1983) Angew. Chem. 95: 893, (1983) Angew. Chem. Internat. Ed. Engl. 22: 869

    Google Scholar 

  108. Brinker UH, Streu J (1980) Angew. Chem. 92: 641, (1980) Angew. Chem. Internat. Edit. Engl. 19: 631

    Google Scholar 

  109. Brinker UH, Wüster H, Maas G (1987) 99: 585, (1987) Angew. Chem. Internat. Ed. Engl. 26: 577

    Google Scholar 

  110. Egenburg IZ (1978) Russ. Chem. Rev. 43: 470

    Google Scholar 

  111. Hopf H (1982) In: Landor SR (ed) The chemistry of the allenes, vol 2, Academic, London, p 563

    Google Scholar 

  112. Skattebøl L (1967) Tetrahedron 23: 1107. The rearrangement is profoundly effected by substituents: Holm KH, Skattebøl L (1984) Acta Chem. Scand. B38: 783

    Google Scholar 

  113. Reinarz RB, Fonken GJ (1973) Tetrahedron Lett. 4591; cf. Minter DE, Fonken GJ, Cook FT (1979) Tetrahedron Lett., 711

    Google Scholar 

  114. Holm KH, Skattebøl L (1974) Tetrahedron Lett. 2347; cf. Skattebøl L (1984) Acta Chem. Scand. B38: 783; Brun R, Grace DSB, Holm KH, Skattebøl L (1986) Acta Chem. Scand., B40: 21

    Google Scholar 

  115. Baird MS, Jeffries I (1986) Tetrahedron Lett. 27: 2493

    Google Scholar 

  116. Fleischhauer I, Brinker UH (1986) Chem. Ber. 120; cf. Brinker UH, Ritzer J (1981) J. Am. Chem. Soc. 103: 2116

    Google Scholar 

  117. Baird MS, Reese CB (1976) Tetrahedron Lett. 2896

    Google Scholar 

  118. Brinker UH, Fleischhauer I (1979) Angew. Chem. 91: 424, (1979) Angew. Chem. Int. Ed. Engl. 18: 396

    Google Scholar 

  119. Fleischhauer I, Brinker UH (1983) Tetrahedron Lett. 24: 3205

    Google Scholar 

  120. Brinker UH, Fleischhauer I (1981) Tetrahedron 37: 4495

    Google Scholar 

  121. Brinker UH, Fleischhauer I (1980) Angew. Chem. 92: 314, (1980) Angew. Chem. Int. Ed. Engl. 19: 304; cf. Brinker UH, Fleischhauer I (1986) Chem. Ber. 119: 1244

    Google Scholar 

  122. Arct J, Skattebøl L (1982) Tetrahedron Lett. 23: 113

    Google Scholar 

  123. Brinker UH, Boxberger M (1983) J. Chem. Res. (S) 100

    Google Scholar 

  124. Baird MS (1971) J. Chem. Soc., Chem. Commun. 1145

    Google Scholar 

  125. Paquette LA, Zon G, Taylor RT (1974) J. Org. Chem. 39: 2676

    Google Scholar 

  126. Nilsen NO, Sydnes LK, Skattebøl L (1978) J. Chem. Soc., Chem. Commun. 128; cf. Nilsen NO, Skattebøl L, Sydnes LK (1982) Acta Chem. Scand. B36: 587

    Google Scholar 

  127. Baird MS, Kaura AC (1976) J. Chem. Soc. Chem. Commun. 356; cf. Boswell RF, Bass RG (1975) J. Org. Chem. 40: 2419

    Google Scholar 

  128. Arct J, Skattebøl L (1982) Acta Chem. Scand. B36: 593

    Google Scholar 

  129. Arct J, Skattebøl L, Stenstrom Y (1983) Acta Chem. Scand. B37: 681

    Google Scholar 

  130. Brinker UH, Haghani A, Gomann K (1985) Angew. Chem. 97: 235, (1985) Angew. Chem. Int. Ed. Engl. 24: 230

    Google Scholar 

  131. Holm KH, Lee DG, Skattebøl L (1978) Acta Chem. Scand. B32: 693

    Google Scholar 

  132. Sydnes LK, Skattebøl L (1978) Acta Chem. Scand. B32: 547; cf. Kitatani K, Hiyame T, Nozaki H (1977) Bull. Chem. Soc. Japan 50: 1600, 2158; Yamamoto H, Kitatani K, Hiyama T, Nozaki H (1977) J. Am. Chem. Soc. 99: 5816

    Google Scholar 

  133. Ransom CJ, Reese CB (1975) J. Chem. Soc., Chem. Commun. 970

    Google Scholar 

  134. Billups WE, Leavell KH, Chow MY, Lewis ES (1972) J. Am. Chem. Soc. 94: 1770

    Google Scholar 

  135. Billups WE, Baker BA, Chow WY, Leavell KH, Lewis ES (1975) J. Org. Chem. 40: 1702

    Google Scholar 

  136. Billups WE, Shields TC, Chow WY, Deno NC (1972) J. Org. Chem. 37: 3676

    Google Scholar 

  137. Surmina LS, Formanovskii AA, Bolesov IG (1978) Zh. Org. Khim. 14: 883; (1978) J. Org. Chem. USSR 14: 821

    Google Scholar 

  138. Lindsay DG, Reese CB (1965) Tetrahedron 21: 1673

    Google Scholar 

  139. Tarakanova AV, Grishin JK, Vashakidze AG, Milvitzkaya EM, Plate AF (1972) Zh. Org. Khim. 8: 1619

    Google Scholar 

  140. Banwell MG (1982) J. Chem. Soc., Chem. Commun. 847

    Google Scholar 

  141. Skattebøl L, Nilsen NO, Myhren F (1986) Acta Chem. Scand. B40: 782

    Google Scholar 

  142. Billups WE, Blakeney AJ, Chow WY (1971) J. Chem. Soc., Chem. Commun. 1461

    Google Scholar 

  143. Billups WE, Chow WY (1973) J. Am. Chem. Soc. 95: 4099

    Google Scholar 

  144. Billups WE, Casserly EW, Arney BE (1984) J. Am. Chem. Soc. 106: 440

    Google Scholar 

  145. Ippen J, Vogel E (1974) Angew. Chem. 86: 780, (1974) Angew. Chem. Int. Ed. Engl. 13: 736

    Google Scholar 

  146. Davalian D, Garratt PJ, Koller W, Mansuri MM (1980) J. Org. Chem. 45: 4183

    Google Scholar 

  147. Billups WE, Chamberlain WT, Asim MJ (1977) Tetrahedron Lett. 571

    Google Scholar 

  148. Halton B, Randall CJ (1982) Tetrahedron Lett. 23: 5591

    Google Scholar 

  149. Baird MS, Nethercott W (1983) Tetrahedron Lett. 24: 605; cf. Baird MS, Hussain HH, Nethercott W (1986) J. Chem. Soc., Perkin I, 1845

    Google Scholar 

  150. Baird MS, Buxton SR, Whitley JS (1984) Tetrahedron Lett. 25: 1509

    Google Scholar 

  151. Review: Baird MS (1988) Topics Curr. Chem. 144: 137 and references cited therein

    Google Scholar 

  152. Mißlitz U, de Meijere A (1980) In: Houben-Weyl, vol E19, Thieme, Stuttgart, p 664 and references cired therein

    Google Scholar 

  153. Slougui N, Rousseau G (1987) Tetrahedron Lett. 28: 1651

    Google Scholar 

  154. Tobey SW, West R (1968) J. Am. Chem. Soc. 88: 2478; see also Sepiol J, Soulen RL (1975) J. Org. Chem. 40: 3791; Glück C, Poignée V, Schwager H (1987) Synthesis 260

    Google Scholar 

  155. Law DF, Tobey SW (1968) J. Am. Chem. Soc. 90: 2376; Seitz G, von Gemmern R (1987) Synthesis 953; Neidlein R, Poignée V, Kramer W, Glück C (1986) Angew. Chem. 98: 735, (1986) Angew. Chem. Int. Ed. Engl. 25: 731

    Google Scholar 

  156. Reviews: Deem ML (1972) Synthesis 675; (1982) 802 and references cited therein. For a recent interesting reaction leading to indolizines see: Smith KA, Waterman KC, Streitwieser A Jr (1985) J. Org. Chem. 50: 3360

    Google Scholar 

  157. Tobey SW, West R (1964) J. Am. Chem. Soc. 86: 4215; West R, Zecher DC, Tobey SW (1970) J. Am. Chem. Soc. 92: 168; for recent examples and applications see: Wadsworth D, Geer S, Detty M (1987) J. Org. Chem. 52: 3662; Eicher T, Huck V, Schneider V, Veith M (1989) Synthesis 367; Eicher T, Schneider U (1989) Synthesis 372

    Google Scholar 

  158. Musigmann K, Mayr H, de Meijere A (1987) Tetrahedron Lett. 28, 4517

    Google Scholar 

  159. For reviews see: de Meijere A (1984) Bull. Soc. Chim. Belges 93: 241; de Meijere A (1987) Chem. Britain 23: 865; de Meijere A (1987) In: Oglobin KA (ed) Modern problems of organic chemistry, No. 9, Leningrad University Press, Leningrad, p 5; de Meijere A, Wessjohann L (1990) Synlett (20)

    Google Scholar 

  160. Nefedov OM, Menchikov LG, Djachenko AI, Agre CA (1986) Z. Vses. Khim Obshestva 31: 182

    Google Scholar 

  161. Jonczyk A, Dabromski M, Wozniak W (1983) Tetrahedron Lett. 24: 1065

    Google Scholar 

  162. Djachenko AI, Agre CA, Rudashevskaja TJ, Shafran RN, Nefedov OM (1984) Izv. Akad. Nauk. SSR, Ser. Khim., 2820. For a review cf. Binger P, Büch HM (1987) Topics Curr. Chem. 135: 77 and references cited therein

    Google Scholar 

  163. Novokreshchennyh AI, Mochalov SS, Shabarov JS (1978) Zh. Organ. Khim. 14: 546, (1978) J. Org. Chem. USSR 14: 505

    Google Scholar 

  164. Henseling KO, Weyerstahl P (1975) Chem. Ber. 108: 2803

    Google Scholar 

  165. Varakin GS, Kostikov RR, Ogloblin KA (1983) Zh. Organ. Khim. 19: 1768

    Google Scholar 

  166. Tishchenko IT, Kulimkovitch OG, Glasov JV (1975) Zh. Organ. Khim. 11: 581, (1975) J. Org. Chem. USSR 11: 579

    Google Scholar 

  167. Kobayashi Y, Taguchi T, Morikowa T, Takase T, Takanashi H (1962) J. Org. Chem. 47: 3232

    Google Scholar 

  168. Woodward RB, Hoffmann R (1970) The conservation of orbital symmetry, Verlag Chemie, Weinheim

    Google Scholar 

  169. Parham WE, Yong KS (1968) J. Org. Chem. 33: 3947

    Google Scholar 

  170. Parham WE, Yong KS (1970) J. Org. Chem. 35: 683

    Google Scholar 

  171. Bessiere Y, Schlosser M (1976) Helv. Chim. Acta 59: 969

    Google Scholar 

  172. Schlosser M (1978) Tetrahedron 34: 3

    Google Scholar 

  173. Warner P, Palmer R (1980) Tetrahedron Lett. 21: 145

    Google Scholar 

  174. Reese CB, Shaw A (1970) J. Chem. Soc. D 1365

    Google Scholar 

  175. Loozen HJ, Robbin WM, Richter TL, Buck HM (1976) J. Org. Chem. 41: 384

    Google Scholar 

  176. Reese CB, Stebles MRD (1972) Tetrahedron Lett. 4427

    Google Scholar 

  177. Arct J, Prawda A, Kozyriev V (1978) Bull. Acad. Pol. Sci. 24: 523

    Google Scholar 

  178. Ito S, Ziffer H, Bax A (1986) J. Org. Chem. 51: 1130

    Google Scholar 

  179. Christl M, Freitag G (1976) Angew. Chem. 88: 508, (1976) Angew. Chem. Int. Ed. Engl. 15: 493; cf. Christl M, Freitag G, Brüntrup G (1978) Chem. Ber. 111: 2320

    Google Scholar 

  180. Danheiser RL, Morin JM, Basak MYA (1981) Tetrahedron Lett. 22: 4205

    Google Scholar 

  181. Reese CB, Shaw A (1970) J. Chem. Soc., Chem. Commun. 1365

    Google Scholar 

  182. Dhanak D, Kuroda R, Reese CB (1987) Tetrahedron Lett., 28: 1827

    Google Scholar 

  183. Skattebø L, Boulette B (1966) J. Org. Chem. 31: 81

    Google Scholar 

  184. Skattebøl L (1966) J. Org. Chem. 31: 1554

    Google Scholar 

  185. Skattebøl L (1970) J. Org. Chem. 35: 3200

    Google Scholar 

  186. Baird MS, Hussein HH (1988) J. Chem. Res. Synop. 292

    Google Scholar 

  187. Groves JT, Ma RW (1974) Tetrahedron Lett. 909

    Google Scholar 

  188. Ishihara T, Kudaka T, Ando T (1984) Tetrahedron Lett. 25: 4765

    Google Scholar 

  189. Neureiter NP (1959) J. Org. Chem. 24: 2044

    Google Scholar 

  190. Varakin GS, Kostikov RR (1986) Sovremennye problemy organicheskoi khimii, No. 8, Leningrade State University, p 76; cf. Wong HNC, Hon M-Y, Tse C-W, Yip Y-C, Tanko J, Hudlicky T (1989) Chem. Rev. 89: 165

    Google Scholar 

  191. Fields R, Haszeldine RN, Peter D (1969) J. Chem. Soc. C 165

    Google Scholar 

  192. Duffey DC, Minyard JP, Lane RH (1966) J. Org. Chem. 31: 3865

    Google Scholar 

  193. Clifford RP, Holbrook KA (1972) J. Chem. Soc., Perkin II 1972

    Google Scholar 

  194. Ferrero JC, Cosa JJ, Staricco EH (1972) J. Chem. Soc., Perkin II 2382

    Google Scholar 

  195. Ioffe AI, Nefedov OM (1974) Izv. Akad. Nauk SSR, Ser. Khim., 1536; (1974) Bull. Acad. Science USSR, 23: 1455

    Google Scholar 

  196. Baird MS, Lindsay DG, Reese CB (1969) J. Chem. Soc. C 1173

    Google Scholar 

  197. Ando T, Hosaka H, Yamanaka H, Funasaka W (1969) Bull. Chem. Soc. Japan 42: 2013

    Google Scholar 

  198. Baird MS (1976) J. Chem. Soc., Perkin I 54

    Google Scholar 

  199. Windberg HE (1959) J. Org. Chem. 24: 264

    Google Scholar 

  200. Nefedov OM, Agaveljan AS (1972) Izv. Akad. Nauk. SSR, Ser. Khim 481; cf. Demhlow EV (1978) Tetrahedron 28: 175

    Google Scholar 

  201. Reese CB, Shaw A (1972) J. Chem. Soc., Chem. Commun. 271

    Google Scholar 

  202. Jefford CW, Mareda J, Gehret J-CE, Kabengele T, Graham WD, Burger U (1976) J. Am. Chem. Soc. 98: 2585

    Google Scholar 

  203. cf. Katz TJ, Cerefice S (1969) J. Am. Chem. Soc. 91: 2405

    Google Scholar 

  204. Jefford CW, Kabengele T, Kovacs J, Burger U (1974) Tetrahedron Lett. 257

    Google Scholar 

  205. de Selms RS, Combs CM (1972) J. Chem. Soc., Chem. Commun. 271

    Google Scholar 

  206. Christl M, Freitag G (1976) Angew. Chem. 88: 508, (1976) Angew. Chem. Int. Ed. Engl. 15: 493; cf. Christl M, Herzog C, Brückner D, Lang R (1986) Chem. Ber. 119: 141

    Google Scholar 

  207. Kostikov RR, Varakin GS, Ogloblin KA (1983) Zh. Organ. Khim., 19: 1625, (1983) J. Org. Chem. USSR 19: 1438; cf. Magarian HA, Milton S, Natarelly G (1972) J. Pharmaceutol. Sci. 61: 1216; Dehmlow EV, Schönefeld J (1971) Liebigs Ann. Chem. 744: (2

    Google Scholar 

  208. McElvain SM, Weyna PL (1959) J. Am. Chem. Soc. 81: 2579

    Google Scholar 

  209. Asahara T, Ono K, Tanaka T (1971) Bull. Chem. Soc. Japan 44: 1130

    Google Scholar 

  210. Schlosser M, Spahic B, Tarchini C, Le Van Chan (1975) Angew. Chem. 87: 346, (1975) Angew. Chem. Int. Ed. Engl. 14: 365; cf. Spahic V, Thimy Thy T, Schlosser M (1980) Helv. Chimica Acta 63: 1236

    Google Scholar 

  211. Schlosser M, Spahic B (1980) Helv. Chimica Acta 63: 1223

    Google Scholar 

  212. Horspool WM, Sutherland RG, Thomson BJ (1971) J. Chem. Soc. C 1558

    Google Scholar 

  213. Shimizu N, Nishida S (1977) Chem. Lett. 839

    Google Scholar 

  214. Kostikov RR, Molchanov AP (1978) Zh. Organ. Khim. 14: 1108, (1978) J. Org. Chem. USSR 14: 1032

    Google Scholar 

  215. Molchanov AP, Kostikov RR (1984) Zh. Organ. Khim. 20: 2118, (1984) J. Org. Chem. USSR 20: 1930

    Google Scholar 

  216. For a recent review see Hudlicky T, Kutchan TM, Naqvi SM (1985) Org. Reactions 33: 247; cf. Paquette LA, Doherty AM (1987) Polyquinane chemistry, Springer-Verlag, Heidelberg

    Google Scholar 

  217. Ketley AD, Berlin AJ, Gorman E, Fisher JP (1966) J. Org. 31: 305

    Google Scholar 

  218. Dolbier WR, Sellers SF (1982) J. Am. Chem. Soc. 104: 2494. A review of the authors works on thermal rearrangements of gem-difluorocyclopropanes covering, inter alia, cyclopropane thermolysis, methylene cyclopropane and spiropentane rearrangements, vinylcyclopropane and cyclopropylcarbinyl isomerizations has been published: Dolbier WR (1981) Acc. Chem. Res. 14: 195

    Google Scholar 

  219. Dolbier WR, Sellers SF (1982) J. Org. Chem. 47: 1

    Google Scholar 

  220. Roth WR, König J, Stein K (1970) Chem. Ber. 103: 426

    Google Scholar 

  221. Jenneskens LW, de Wolf WH, Bickelhaupt F (1986) Chem. Ber. 119: 754

    Google Scholar 

  222. Dehnlow EV, Balschukat D, Schmidt PP, Krause R (1986) J. Chem. Soc., Chem. Commun. 1435

    Google Scholar 

  223. The extensive literature on this process has been summarized by Gajewski JJ (1981) Hydrocarbon thermal isomerizations, Academic, New York, p 90

    Google Scholar 

  224. Slafer WD, English AD, Harris DD, Shellhamer DF, Meshishnek MS, Aue DH (1975) J. Am. Chem. Soc. 97: 6638

    Google Scholar 

  225. Chesick JP (1963) J. Am. Chem. Soc. 85: 2720

    Google Scholar 

  226. Crawford RJ, Tokunaga H (1974) Canad. J. Chem. 52: 4033

    Google Scholar 

  227. Kirmse W, Murawski H-R (1977) J. Chem. Soc., Chem. Commun. 122

    Google Scholar 

  228. Dolbier WR, Fielder TH (1978) J. Am. Chem. Soc. 100: 5577

    Google Scholar 

  229. Gajewski JJ (1971) J. Am. Chem. Soc. 93: 4450

    Google Scholar 

  230. Kostikov RR, Molchanov AP (1979) Doklady Akad. Nauk USSR 246: 1377

    Google Scholar 

  231. Dolbier WR, Seabury M, Daly D, Smart BE (1986) J. Org. Chem., 51: 974

    Google Scholar 

  232. Höhn J, Pickardt J, Weyerstahl P (1983) Chem. Ber. 116: 798

    Google Scholar 

  233. Weyerstahl P, Blume G (1972) Tetrahedron 28: 5281

    Google Scholar 

  234. Makosza M, Gajos I (1974) Roczniki Chem. 48: 1883

    Google Scholar 

  235. de Angelis F, Gambacorte A, Nicoletti R, (1976) Synthesis 798; Dehmlow EV, Franke K (1979) Liebigs Ann. Chem. 1456

    Google Scholar 

  236. MacDonald TL (1978) Tetrahedron Lett. 4201

    Google Scholar 

  237. Hirao T, Harano Y, Yamana Y, Ohshiro Y, Agawa T (1983) Tetrahedron Lett. 24: 1255

    Google Scholar 

  238. Hirao T, Fuijhara Y, Kurokawa K, Oshiro Y, Agawa T (1986) J. Org. Chem. 51: 2830

    Google Scholar 

  239. Janovskaja LA, Dambrovskij VA, Khusid AK (1980) Cyclopropanes with functional groups, Nauka, Moscow, p 221

    Google Scholar 

  240. Hashem MA, Hülskämper R, Weyerstahl P (1985) Chem. Ber. 118: 840; Weyerstahl P, Hashem MA (1987) Chem. Ber. 120: 449; cf. Sasaki T, Kamematsu K, Yukimoto Y (1974) J. Org. Chem. 39: 155

    Google Scholar 

  241. Christl M, Herzog C, Brückner D, Lang R (1986) Chem. Ber., 119: 141

    Google Scholar 

  242. Christl M, Freitag G, Brüntrup G (1978) Chem. Ber. 111: 2320

    Google Scholar 

  243. Christl M, Lechner M (1982) Chem. Ber. 115: 1

    Google Scholar 

  244. Christl M, Nusser R, Herzog C (1988) Chem. Ber. 121: 309

    Google Scholar 

  245. Christl M, Lang R, Herzog C (1986) Tetrahedron 42: 1585

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Armin deMeijere

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Kostikov, R.R., Molchanov, A.P., Hopf, H. (1990). Gem-Dihalocyclopropanes in organic synthesis. In: deMeijere, A. (eds) Small Ring Compounds in Organic Synthesis IV. Topics in Current Chemistry, vol 155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52422-3_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-52422-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52422-9

  • Online ISBN: 978-3-540-46984-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics