Advertisement

The influence of bulk disorder on wetting phenomena in two dimensional systems

  • Th. M. Nieuwenhuizen
Conference paper
  • 154 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 354)

Abstract

Disorder may modify the critical behaviour of two-dimensional wetting and depinning transitions in various ways. It is shown that first order transitions may be driven second order, that critical exponents of continuous transitions may be changed, that reentrant wetting may appear, and that correlated disorder may drive a continuous transition first order.

Keywords

Correlation Length Ising Model Critical Exponent Impurity Line Order Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.B. Abraham in Phase transitions and Critical Phenomena Vol. 10, C. Domb and J.L. Lebowitz, eds. (Academic, NY, 1986).Google Scholar
  2. 2.
    J.M.J. van Leeuwen and H.J. Hilhorst, Physica 107A (1981) 319 and S.T. Chui and J.D. Weeks, Phys. Rev. B23 (1981) 2438.Google Scholar
  3. 3.
    R. Lipowsky and M.E. Fisher, Phys. Rev. Lett. 56 (1986) 472.Google Scholar
  4. 4.
    C. Ebner and W.F. Saam, Phys. Rev. Lett. 58 (1987) 587 and J.O. Indekeu, Nucl. Phys. B (Proc. Suppl.) 5A (1988) 168.Google Scholar
  5. 5.
    R. Pandit, M. Schick and M. Wortis, Phys. Rev. B26 (1982) 5112.Google Scholar
  6. 6.
    S. Dietrich, in Phase Transitions and Critical Phenomena, vol. 12, C. Domb and J.L. Lebowitz, eds. (Academic, NY, 1988).Google Scholar
  7. 7.
    H. Orland, these proceedings.Google Scholar
  8. 8.
    P. Lloyd, J. Phys. C2 (1969) 1717.Google Scholar
  9. 9.
    Th. M. Nieuwenhuizen, Phys. Lett. 103A (1984) 333.Google Scholar
  10. 10.
    D.A. Huse and C.L. Henley, Phys. Rev. Lett. 54 (1985) 2708.Google Scholar
  11. 11.
    G. Forgacs, J.M. Luck, Th. M. Nieuwenhuizen and H. Orland, Phys. Rev. Lett. 57 (1986) 2184; J. Stat. Phys. 51 (1988) 29.Google Scholar
  12. 12.
    G. Forgacs and Th. M. Nieuwenhuizen, J. Phys. A21 (1988) 3871.Google Scholar
  13. 13.
    M. Kardar, Phys. Rev. Lett. 55 (1985) 2235; Nucl. Phys. B290 (FS20) (1987) 582.Google Scholar
  14. 14.
    J.B. Mc Guire, J. Math. Phys. 5 (1964) 622.Google Scholar
  15. 15.
    Th. M. Nieuwenhuizen, to appearGoogle Scholar
  16. 16.
    D.A. Huse, C.L. Henley and D. Fisher, Phys. Rev. Lett. 55 (1985) 2924.Google Scholar
  17. 17.
    T. Nattermann, Europhys. Lett 4 (1987) 1241.Google Scholar
  18. 18.
    Th. M. Nieuwenhuizen, J. Phys. A21 (1988) L567Google Scholar
  19. 19.
    B.M. Mc Coy and T.T. Wu, The two dimensional Ising Model, (Harvard, Cambridge, 1973).Google Scholar
  20. 20.
    Th. M. Nieuwenhuizen and H. Orland, Phys. Rev. B, to appear (1989).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Th. M. Nieuwenhuizen
    • 1
  1. 1.Institut für Theoretische Physik A RWTHAachenWestern Germany

Personalised recommendations