Advertisement

Magnetic wetting transition

  • J. C. Bacri
  • R. Perzynski
  • D. Salin
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 354)

Abstract

We follow the spreading of a magnetic liquid, a non wetting ferrofluid, along a wire. The external control parameter of the spreading length of the fluid is the magnetic field generated by a current travelling through the conducting wire. The spreading length results from a balance between capillary and magnetic forces. For a current threshold, we observe a rapid jump of this length corresponding to a sheath-like coverage of the wire. This magnetic wetting transition is analogous to the wetting transition on a fiber, predicted for a totally wetting fluid in the presence of van der Waals forces. The longer range of magnetic forces leads to a transition at a macroscopic scale. The crossover between micro and macro scales is studied. 1 associated with the Centre National de la Recherche Scientifique

Keywords

Contact Angle Magnetic Force Magnetic Fluid Spreading Length Spreading Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Young T., Philos. Trans. R. Soc. London 95 (1805) 65.Google Scholar
  2. 2.
    Zisman W., in “Contact Angle, Wettability and Adhesion” edited by F.M. Fowkes, Advances in Chemistry Series N° 43 (American Society, Washington D.C., 1964), p. 1.Google Scholar
  3. 3.
    Cahn J.W., J. Chem. Phys. 66 (1977) 3667.Google Scholar
  4. 4.
    Huh C. and Scriven L.E., J. Colloid and Interface Sc. 35 (1971) 85.Google Scholar
  5. 5.
    De Gennes P.G., Rev. Mod. Physics 57 (1985) 827 and references therein, and Special Issue of “Revue de Physique Appliquée” Vol. 23 (Paris 1988).Google Scholar
  6. 6.
    Cazabat A.M., Contemp Phys., 28, 347 (1987).Google Scholar
  7. 7.
    Hardy W., Philos. Mag. 38 (1919) 49.Google Scholar
  8. 8.
    Beysens D., Estève D., Phys. Rev. Lett., 54, 2123 (1985).Google Scholar
  9. 9.
    Pincus P., in “Biophysical effects of steady magnetic fields”, (Springer Verlag, 1986).Google Scholar
  10. 10.
    Rosensweig R.E., “Magnetic fluids”, Int. Sci. Tech. (1966) 48; “Ferrohydrodynamics” (Cambridge University Press, 1985).Google Scholar
  11. 11.
    Brochard F., J. Chem. Phys. 84 (1986) 4664.Google Scholar
  12. 12.
    Adamson A., “Physical Chemistry of Surfaces”, John Wiley and Sons Ed., New York, (1982).Google Scholar
  13. 13.
    Joanny J.F., Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris (1985).Google Scholar
  14. 13. a
    Joanny J.F. and de Gennes P.G., C.R. Acad. Sc. Paris 299 II (1984) 279; 299 II (1984) 605.Google Scholar
  15. 14.
    Bacri J.C., Perzynski R.,Salin D., C.R. Acad. Sc., Paris 307 II, 467 (1988).Google Scholar
  16. 15.
    Bacri J.C., Perzynski R. and Salin D., Andeavour, 12, 76 (1988).Google Scholar
  17. 16.
    Massart R., IEEE Trans. on Magnetics 17 (1981) 1247.Google Scholar
  18. 17.
    Bacri J.C., Perzynski R., Salin D., Tourinho F., Europhysics Lett., 5, 547 (1988).Google Scholar
  19. 18.
    Bacri J.C., Frenois C., Perzynski R., Salin D., Rev. Phys. Appl., 23, 1017 (1988).Google Scholar
  20. 19.
    Bacri J.C., Brochard-Wyart F., Di Meglio J.M., Perzynski R., Quéré D. and Salin D., “Hydrodynamics of dispersed media” éd. by J.P. Hulin, A.M. Cazabat, F. Carmona and E. Guyon (to be published).Google Scholar
  21. 20.
    Bacri J.C., Esnault C., Perzynski R. and Salin D., (to be published).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • J. C. Bacri
    • 1
  • R. Perzynski
    • 1
  • D. Salin
    • 1
  1. 1.Laboratoire d'UltrasonsUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations