Skip to main content

The ring of k-regular sequences

  • Conference paper
  • First Online:
STACS 90 (STACS 1990)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 415))

Included in the following conference series:

Abstract

The automatic sequence is the central concept at the intersection of formal language theory and number theory. It was introduced by Cobham, and has been extensively studied by Christol, Kamae, Mendès France and Rauzy, and other writers. Since the range of an automatic sequence is finite, however, their descriptive power is severely limited.

In this paper, we generalize the concept of automatic sequence to the case where the sequence can take its values in a (possibly infinite) ring R; we call such sequences k-regular. (If R is finite, we obtain automatic sequences as a special case.) We argue that k-regular sequences provide a good framework for discussing many “naturally-occurring” sequences, and we support this contention by exhibiting many examples of k-regular sequences from numerical analysis, topology, number theory, combinatorics, analysis of algorithms, and the theory of fractals.

We investigate the closure properties of k-regular sequences. We prove that the set of k-regular sequences forms a ring under the operations of term-by-term addition and convolution. Hence the set of associated formal power series in R[[X]] also forms a ring.

We show how k-regular sequences are related to ℤ-rational formal series. We give a machine model for the k-regular sequences. We prove that all k-regular sequences can be computed quickly.

Let the pattern sequence ep (n) count the number of occurrences of the pattern P in the base-k expansion of n. Morton and Mourant showed that every sequence over ℤ has a unique expansion as sum of pattern sequences. We prove that this “Fourier” expansion maps k-regular sequences to k-regular sequences. In particular, the coefficients in the expansion of ep(an+b) form a k-automatic sequence.

Research supported in part by “PICS: Théorie des nombres et ordinateurs”

Research supported in part by NSF Grant CCR-8817400, the Wiscconsin Alumni Research Foundation, and a Walter Burke award.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-P. Allouche, Automates finis en théorie des nombres, Expo. Math. 5 (1987), 239–266.

    Google Scholar 

  2. J.-P. Allouche, P. Morton, and J. Shallit, Pattern spectra, substring enumeration, and automatic sequences, preprint.

    Google Scholar 

  3. N. G. de Bruijn, Some direct decompositions of the set of integers, Math. Tables Aids Comput. 18 (1964), 537–546.

    Google Scholar 

  4. A. Blanchard and M. Mendès France, Symétrie et transcendance, Bull. Sci. Math. 106 (1982), 325–335.

    Google Scholar 

  5. J. Berstel and C. Reutenauer, Rational series and their languages, Springer-Verlag, 1988.

    Google Scholar 

  6. S. Brlek, Enumeration of factors in the Thue-Morse word, Disc. Appl. Math. 24 (1989), 83–96.

    Article  Google Scholar 

  7. G. Christol, T. Kamae, M. Mendès France and G. Rauzy, Suites algébriques, automates et substitutions, Bull. Soc. Math. France 108 (1980), 401–419.

    Google Scholar 

  8. A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164–192.

    Article  Google Scholar 

  9. J. Coquet, A summation formula related to the binary digits, Invent. Math. 73 (1983), 107–115.

    Article  Google Scholar 

  10. J. C. van der Corput, Verteilungsfunktionen, Proc. Ned. Akad. v. Wet. 38 (1935), 813–821.

    Google Scholar 

  11. C. Choffrut and M. P. Schützenberger, Counting with rational functions, Theor. Comput. Sci. 58 (1988), 81–101.

    Article  Google Scholar 

  12. M. Dekking, M. Mendès France, and A. van der Poorten, FOLDS!, Math. Intell. 4 (1982), 130–138; 173–195.

    Google Scholar 

  13. N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947), 589–592.

    Google Scholar 

  14. P. Flajolet and L. Ramshaw, A note on Gray code and odd-even merge, SIAM J. Comput. 9 (1980), 142–158.

    Article  Google Scholar 

  15. H. W. Gould, Exponential binomial coefficient series, Technical Report 4, Department of Mathematics, W. Virginia Univ., September 1961.

    Google Scholar 

  16. E. Gilbert, Gray codes and paths on the n-cube, Bell Sys. Tech. J. 37 (1958), 815–826.

    Google Scholar 

  17. R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989.

    Google Scholar 

  18. J. W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quart. J. Pure Appl. Math. 30 (1899), 150–156.

    Google Scholar 

  19. R. Graham, A. Yao, and F. Yao, Addition chains with multiplicative cost, Disc. Math. 23 (1978), 115–119.

    Article  Google Scholar 

  20. J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals, Numer. Math. 2 (1960), 84–90.

    Article  Google Scholar 

  21. S. Lang, Algebra, Addison-Wesley, 1971.

    Google Scholar 

  22. D. H. Lehmer, K. Mahler, and A. J. van der Poorten, Integers with digits 0 or 1, Math. Comp. 46 (1986) 683–689.

    Google Scholar 

  23. J. H. Loxton and A. J. van der Poorten, An awful problem about integers in base four, Acta Arithmetica 49 (1987), 193–203.

    Google Scholar 

  24. A. de Luca and S. Varricchio, Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups, Theor. Comput. Sci. 63 (1989), 333–348.

    Article  Google Scholar 

  25. M. Mendès France and A. J. van der Poorten, From geometry to Euler identities, Theor. Comput. Sci. 65 (1989), 213–220.

    Article  Google Scholar 

  26. M. Mendès France and J. Shallit, Wire bending, J. Combinatorial Theory, A 50 (1989), 1–23.

    Article  Google Scholar 

  27. P. Morton and W. Mourant, Paper folding, digit patterns, and groups of arithmetic fractals, Proc. Lond. Math. Soc. 59 (1989), 253–293.

    Google Scholar 

  28. L. Moser, An application of generating series, Math. Mag. 35 (1962), 37–38.

    Google Scholar 

  29. D. J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969), 719–721.

    Google Scholar 

  30. D. J. Newman and M. Slater, Binary digit distribution over naturally defined sequences, Trans. Amer. Math. Soc. 213 (1975), 71–78.

    Google Scholar 

  31. G. de Rham, Un peu de mathématiques à propos d'une courbe plane, Elem. Math. 2 (1947), 73–77; 89–97.

    Google Scholar 

  32. G. Rauzy, Suites à termes dans un alphabet fini, Sém. Théorie des Nombres de Bordeaux, 1982–3, 25.01–25.16.

    Google Scholar 

  33. B. Reznick, A new sequence with many properties, Abs. Amer. Math. Soc. 5 (1984), 16.

    Google Scholar 

  34. B. Reznick, Some extremal problems for continued fractions, Ill. J. Math. 29 (1985), 261–279.

    Google Scholar 

  35. O. Salon, Quelles tuiles! (Pavages apériodiques du plan et automates bidimensionnels), Séminaire de Théorie des Nombres de Bordeaux, (2ème Série) 1 (1989), 1–25.

    Google Scholar 

  36. M. P. Schützenberger, On the definition of a family of automata, Information and Control 4 (1961), 245–270.

    Article  Google Scholar 

  37. N. J. A. Sloane, A handbook of integer sequences, Academic Press, 1973.

    Google Scholar 

  38. A. Salomaa and M. Soittola, Automata-theoretic aspects of formal power series, Springer-Verlag, 1978.

    Google Scholar 

  39. M. A. Stern, Über eine zahlentheoretische Funktion, J. reine angew. Math. 55 (1858), 193–220.

    Google Scholar 

  40. T. Tapsoba, Thèse de troisième cycle, Université d'Aix-Marseille II, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Choffrut Thomas Lengauer

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Allouche, JP., Shallit, J. (1990). The ring of k-regular sequences. In: Choffrut, C., Lengauer, T. (eds) STACS 90. STACS 1990. Lecture Notes in Computer Science, vol 415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52282-4_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-52282-4_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52282-9

  • Online ISBN: 978-3-540-46945-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics