Advertisement

A fast algorithm to decide on simple grammars equivalence

  • Didier Caucal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 401)

Abstract

We present an algorithm to decide on simple grammars equivalence. Its complexity in time and space is polynomial in the valuation and the length of the description of the compared grammars, and exponential if we only take the last parameter into account. From this algorithm, we deduce an optimal upper bound of the number of parallel derivations to be applied to decide on equivalence.

Keywords

Binary Relation Equivalence Algorithm Parallel Derivation Pushdown Automaton Halt Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bu 73.
    P. Butzbach "Sur l'équivalence des grammaires simples", Actes des premières journées d'informatique théorique. Languages algébriques. Bonascre. pp 223–245.Google Scholar
  2. Ca 87.
    D. Caucal "How to improve branching algorithms for deciding on grammars equivalence", Report INRIA 618.Google Scholar
  3. Co 83.
    B. Courcelle "An axiomatic approach to the KH algorithms", Math. Systems Theory 16, pp 191–231.Google Scholar
  4. Gi-Gr 66.
    S. Ginsburg, S.A. Greibach "Deterministic context-free languages", Information and Control 9, pp 602–648.Google Scholar
  5. Ha 78.
    M.A. Harrison "Introduction to formal language theory", Addison-Wesley.Google Scholar
  6. Ha-Ha Ye 79.
    M.A. Harrison, I.M. Havel, A. Yeduhaï "On equivalence of grammars through transformation trees", TCS 9, pp 191–231.Google Scholar
  7. Ko-Ho 66.
    A.J. Korenjak, J.E. Hopcroft "Simple deterministic languages", Seventh Annual IEEE Switching and Automata Theory Conference, pp 36–46.Google Scholar
  8. Ol-Pn 77.
    T. Olshansky, A. Pnueli "A direct algorithm for checking equivalence of LL(k) grammars", TCS 4, pp 321–349.Google Scholar
  9. Oy-Ho 78.
    M. Oyamaguchi, N. Honda "The decidability of equivalence for deterministic stateless pushdown automata", Information and Control 38, pp 367–376.Google Scholar
  10. Oy-Ho In 80.
    M. Oyamaguchi, N. Honda, Y. Inagaki "The equivalence problem for real-time strict deterministic languages", Information and Control 45, pp 95–115.Google Scholar
  11. To 84.
    E. Tomita "An extended direct branching algorithm for checking equivalence of deterministic pushdown automata", TCS 32, pp 87–120.Google Scholar
  12. Va 74.
    L.G. Valiant "The equivalence problem for deterministic finite-turn pushdown automata", Information and Control 25, pp 123–153.Google Scholar
  13. Va-Pa 75.
    L.G. Valiant, M.S. Paterson "Deterministic one-counter automata", JCSS 10, pp 340–350.Google Scholar
  14. Wo 73.
    D. Wood "Some remarks on the KH algorithms for s-grammars", BIT 13, pp 476–489.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Didier Caucal
    • 1
  1. 1.IRISA, Campus de BeaulieuRennes CedexFrance

Personalised recommendations