Augmentation problems on hierarchically defined graphs

Preliminary version
  • David Fernández-Baca
  • Mark A. Williams
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 382)


Polynomial Time Algorithm Graph Grammar Terminal Vertex Hamiltonian Circuit Hierarchical Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. L. Bentley, T. Ottmann and P. Widmayer, The Complexity of Manipulating Hierarchically Defined Sets of Rectangles, Advances in Computing Research, Vol. 1, pp. 127–158, 1983.Google Scholar
  2. [2]
    K. P. Eswaran and R. E. Tarjan, Augmentation Problems, SIAM Journal on Computing, Vol. 5, No. 5, pp. 653–665, December 1976.CrossRefGoogle Scholar
  3. [3]
    H. Galperin and A. Widgerson. Succinct Representations of Graphs, Information and Control No. 56 (1983), 143–157.Google Scholar
  4. [4]
    T. Lengauer. Efficient algorithms for finding minimum spanning forests of hierarchically defined graphs. Journal of Algorithms No. 8 (1987), 260–284.Google Scholar
  5. [5]
    T. Lengauer and K. Wagner. The correlation between the complexities of the non-hierarchical and hierarchical versions of graph properties. Proceedings of STACS 87 (F.J. Brandenburg et al. eds.), Springer LNCS No. 247 (1987), 100–113.Google Scholar
  6. [6]
    T. Lengauer and E. Wanke. Efficient solution of connectivity problems on hierarchically defined graphs. SIAM J. Comput Vol. 17, No. 6, pp. 1063–1080, (1989).Google Scholar
  7. [7]
    T. Lengauer and E. Wanke. Decision Problems on Cellular Graph Grammars, Theoretische Informatik No. 45, University of Paderborn, Paderborn, West Germany, October 1987.Google Scholar
  8. [8]
    T. Lengauer and E. Wanke. Efficient processing of hierarchical graphs for engineering design. EATCS Bulletin, No 35 (1988).Google Scholar
  9. [9]
    J. B. Orlin. Some problems on dynamic/periodic graphs. Progress in Combinatorial Optimization, 1984.Google Scholar
  10. [10]
    C. Papadimitriou and M. Yannakakis. A note on succinct representation of graphs. Information and Control 71 (1986), 181–185.CrossRefGoogle Scholar
  11. [11]
    A. Rosenthal and Anita Goldner. Smallest Augmentations to Biconnect a Graph, SIAM Journal on Computing, Vol. 6, No. 1, pp. 55–66, March 1977.CrossRefGoogle Scholar
  12. [12]
    K. Wagner. The complexity of problems concerning graphs with regularities. Proceedings of MFCS 84 (M.P Chytil and V. Koubek, eds.), Springer LNCS No. 176 (1984), 544–552.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • David Fernández-Baca
    • 1
  • Mark A. Williams
    • 1
  1. 1.Department of Computer ScienceIowa State UniversityAmes

Personalised recommendations