Advertisement

Analysis of kdt-trees: Kd-trees improved by local reorganisations

  • Walter Cunto
  • Gustavo Lau
  • Philippe Flajolet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 382)

Abstract

This paper deals with kd-tree like structures that implement the multidimensional dictionary. It presents the first efficient online reorganisation method that improves the performance of kd-trees. We propose a new variation of kd-trees, to be called kdt-trees, whereby the updating procedures guarantee that any subtree of size greater than 2t, t≥0, has at least t nodes on each side. Thus, kd-trees are a special case of kdt-trees with t=0. The analysis developed provides, for the first time, an asymptotic expression for the variance of the performance of partial match queries in kd-tree like structures. The relevance of kdt-trees is supported by the fact that they approach the performance of fully balanced kd-trees for small values of t.

Keywords

Search Pattern Lower Order Term Probability Generate Function Binary Search Tree Domain Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. [Ad 62]
    Adel'son-Vel'skii, G. M., Landis, E. M.: An Algorithm For The Organization Of Information; Doklady Akademiia Naur USSR 146:263–266 (1962).Google Scholar
  2. [Ah 79]
    Aho, A. V., Ullman, J. D.: Optimal Partial-Match Retrieval When Fields Are Independently Specified; ACM TODS 4(2):168–179 (1979).CrossRefGoogle Scholar
  3. [An 83]
    Anderson, D. P.: Techniques For Reducing Pen Plotting Time; ACM Trans. on Graphics 2(3):197–212 (1983).Google Scholar
  4. [Ba 77]
    Baer, J.L. and Schawb, B.: A Comparison Of Tree-Balancing Algorithms; Comm. ACM 20(5):322–330 (1977).Google Scholar
  5. [Be 65]
    Bell, C. J.: An Investigation Into The Principles Of The Classification And Analysis Of Data On An Automatic Digital Computer; Doctoral Dissertation, Leeds University, 1965.Google Scholar
  6. [Be 75]
    Bentley, J. L.: Multidimensional Binary Search Trees Used For Associative Searching; Comm. ACM 18(9):509–517 (1975).CrossRefGoogle Scholar
  7. [Bo 60]
    Boole, G.: Calculus Of Finite Differences; Chelsea 1860, New York, 5th Edition 1970.Google Scholar
  8. [Br 70]
    de Bruijn, N.G.: An Asymptotic Methods in Analysis; North-Holland Publishing Co., Amsterdam, 1970. Edition 1970.Google Scholar
  9. [Bu 77]
    Burkhard, W. A.: Associative Retrieval Trie Hash-Coding; JCSS 15:280–299 (1977).Google Scholar
  10. [Bu 79]
    Burkhard, W. A.: Partial-Match Hash Coding: Benefits of Redundancy; ACM TODS 4(2):228–239 (1979).Google Scholar
  11. [Co 55]
    Coddington, E. A., Levinson, N.: Theory Of Ordinary Differential Equations; MacGraw-Hill, New York, 1955.Google Scholar
  12. [Cu 87]
    Cunto, W., Gascón, J. L.: Improving Time And Space Efficiency In Generalized Binary Search Trees; Acta Informatica 24:583–594 (1987).Google Scholar
  13. [Di 66]
    Dieudonné, J.: Fundamentos De Análisis Moderno; Ed. Reverté, Barcelona, 1966.Google Scholar
  14. [El 77]
    Elsgoltz, L.: Ecuaciones Differenciales y Cálculo Variacional; Editorial MIR, Moscú, 1977.Google Scholar
  15. [Fi 74]
    Finkel, R. A., Bentley, J. L.: Quad trees: A Data Structure For Retrieval On Composite Keys; Acta Informatica 4:1–9 (1974).CrossRefGoogle Scholar
  16. [Fl 86]
    Flajolet, P., Puech, C.: Partial Match Retrieval Of Multidimensional Data; J. ACM 33(2):371–407 (1986).Google Scholar
  17. [Go 83]
    Gonnet, G.H., Olivie, H.J., Wood. D.: Height-Ratio-Balances Trees; Computer J. 26(2):106–108 (May 1983).Google Scholar
  18. [Kn 68]
    Knuth, D. E.: The Art Of Computer Programming, Vol. 1/Fundamental Algorithms; 2nd Edition, Addison Wesley, Reading Massachusetts, 1973.Google Scholar
  19. [Kn 73]
    Knuth, D. E.: The Art Of Computer Programming, Vol. 3/Searching and Sorting; 2nd Edition, Addison Wesley, Reading Massachusetts, 1973.Google Scholar
  20. [La 88]
    Lau, G. S.: Arboles Multidimensionales de Búsqueda Binaria con Reorganización Local; Tesis de Maestría, Dept. de Ciencias de la Computación, Universidad Simón Bolívar, 1988.Google Scholar
  21. [Ma 84]
    Matsuyama, T., Hao, L. V., Nagao, M.: A File Organization For Geographic Information Systems Based On Spatial Proximity; Computer Vision Graphics and Image Processing 26(3):303–318 (1984).Google Scholar
  22. [Or 82]
    Orenstein, J. A.: Multidimensional Tries Used For Associative Searching; Information Processing Letters 14(4):150–157 (1982).CrossRefGoogle Scholar
  23. [Po 85]
    Poblete, P. V., Munro, J. I.: The Analysis Of A Fringe Heuristic For Binary Search Trees; J. of Algorithms 6:336–350 (1985).Google Scholar
  24. [Ri 76]
    Rivest, R. L.: Partial-Match Retrieval Algorithms; SIAM J. Computing 5(1):19–50 (1976).Google Scholar
  25. [Sa 84]
    Samet, H.: The Quadtree And Related Hierarchical Data Structures; Computing Surveys 16(2):187–260 (1984).CrossRefGoogle Scholar
  26. [Sc 82]
    Schenermann, P., Ouksel M.:Multidimensional B-trees For Associative Searching In Database Systems; Inform. Syst., 7:123–137 (1982).Google Scholar
  27. [Se 75]
    Sedgewick, R.: Quicksort; Ph.D. thesis, Computer Science Dept.; Stanford University, Report STAN-CS-75-492, 1975.Google Scholar
  28. [Sp 70]
    Spivak, M.: A Comprehensive Introduction To Differential Geometry; Vol. 1, Publish or Perish, Boston, 1970.Google Scholar
  29. [Va 76]
    Vaishavi, V.K.:Multidimensional HeightBalanced Trees; IEEE Trans. on Comp., C-33(4):334–343 (1984).Google Scholar
  30. [Wa 76]
    Walker, A., Wood, D.: Locally Balanced Binary Trees, Computer J. 19(4):322–325 (1976).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Walter Cunto
    • 1
  • Gustavo Lau
    • 2
  • Philippe Flajolet
    • 3
  1. 1.Centro Científico, IBM de VenezuelaCaracasVenezuela
  2. 2.Departamento de Matemáticas y Ciencias de la ComputaciónUniversidad Simón BolívarCaracasVenezuela
  3. 3.INRIALes Chesnay CedexFrance

Personalised recommendations