Skip to main content

On varieties of languages closed under products with counter

  • Communications
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1989 (MFCS 1989)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 379))

  • 150 Accesses

Abstract

We characterize the varieties of rational languages closed under products with counter. They are exactly the varieties that correspond via Eilenberg's theorem to the varieties of monoids closed under inverse LG sol -relational morphisms. This yields some decidability results for certain classes of rational languages.

This work was supported by the P.R.C. Mathématique et Informatique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Azevedo. Operações implícitas sobre pseudovariedades de semigrupos, aplicações, Doctoral Dissertation, Universidade do Porto, Porto, 1989.

    Google Scholar 

  2. D. Barrington. Bounded-width polynomial-size branching programs recognize only those languages in NC 1, in Proc. 18th A.C.M. S.T.O.C., 1986, pp. 1–5.

    Google Scholar 

  3. S. Eilenberg. Automata, Languages and Machines, vol. B, Academic Press (New York), 1976.

    Google Scholar 

  4. S. Kleene. Representation of events in nerve nets and finite automata, in Automata Studies (Shannon and McCarthy eds.), Princeton University Press, (Princeton) 1954, pp. 3–51.

    Google Scholar 

  5. J.-E. Pin. Concatenation hierarchies and decidability results, in Combinatorics on Words, Progress and Perspectives (L. Cummings ed.), Academic Press, 1983, pp. 195–228.

    Google Scholar 

  6. J.-E. Pin. Varitétés de langages formels, Masson (Paris), 1984, and Varieties of formal languages, North Oxford Academic (London), 1986 and Plenum (New-York), 1986.

    Google Scholar 

  7. J.-E. Pin. Topologies for the free monoid, to appear in Journal of Algebra.

    Google Scholar 

  8. J. Rhodes and B. Tilson. The kernel of monoid morphisms: a reversal-invariant decomposition theory, preprint.

    Google Scholar 

  9. J. Rhodes and P. Weil. Decomposition techniques for finite semigroups, part 1, to appear in Journal of Pure and Applied Algebra.

    Google Scholar 

  10. J. Rhodes and P. Weil. Decomposition techniques for finite semigroups, part 2, to appear in Journal of Pure and Applied Algebra.

    Google Scholar 

  11. M.-P. Schützenberger. On finite monoids having only trivial subgroups, in Information and Control 8 (1965), pp. 190–194.

    Google Scholar 

  12. M.-P. Schützenberger. Sur le produit de concaténation non ambigu, in Semigroup Forum 13 (1976), pp. 47–75.

    Google Scholar 

  13. I. Simon. Piecewise testable events, in Proc. 2nd G.I. Conf., Lecture Notes in Computer Science 33, Springer (1975), pp.214–222.

    Google Scholar 

  14. H. Straubing. Recognizable sets and power sets of finite semigroups, in Semigroup Forum 18 (1979), pp. 331–340.

    Google Scholar 

  15. H. Straubing. Families of recognizable sets corresponding to certain varieties of finite monoids, in Journal of Pure and Applied Algebra 15 (1979), pp. 305–318.

    Google Scholar 

  16. H. Straubing. Aperiodic homomorphisms and the concatenation product of recognizable sets, in Journal of Pure and Applied Algebra 15 (1979), pp. 319–327.

    Google Scholar 

  17. H. Straubing. A generalization of the Schützenberger product of finite monoids, in Theoretical Computer Science 13 (1981), pp. 137–150.

    Google Scholar 

  18. H. Straubing. Semigroups and languages of dot-depth two, in Theoretical Computer Science 58 (1988), pp. 361–378.

    Google Scholar 

  19. H. Straubing, D. Thérien and W. Thomas. Regular languages defined with generalized quantifiers, to appear.

    Google Scholar 

  20. D. Thérien. Languages of nilpotent and solvable groups, in Proc. 6th I.C.A.L.P., Lecture Notes in Computer Science 71, Springer, Berlin (1979), pp. 616–632.

    Google Scholar 

  21. D. Thérien. Classification of finite monoids: the language approach, in Theoretical Computer Science 14 (1981), pp. 195–208.

    Google Scholar 

  22. D. Thérien. Subword counting and nilpotent groups, in Combinatorics on Words, Progress and Perspectives (L. Cummings ed.), Academic Press, 1983, pp. 297–305.

    Google Scholar 

  23. B. Tilson. Chapters XI and XII in [3].

    Google Scholar 

  24. P. Weil. Produits et décomposition d'automates, applications à la théorie des langages, thèse de troisième cycle, Université de Paris 7 (1985).

    Google Scholar 

  25. P. Weil. Inverse monoids and the dot-depth hierarchy, Ph.D. Thesis, University of Nebraska, Lincoln, 1988.

    Google Scholar 

  26. P. Weil. Concatenation product: a survey, to appear in Actes de l'Ecole de Printemps d'Inform. Th., Ramatuelle, 1988.

    Google Scholar 

  27. P. Weil. An extension of the Schützenberger product, to appear.

    Google Scholar 

  28. P. Weil. Products of languages with counter, to appear in Theoretical Computer Science.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Antoni Kreczmar Grazyna Mirkowska

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weil, P. (1989). On varieties of languages closed under products with counter. In: Kreczmar, A., Mirkowska, G. (eds) Mathematical Foundations of Computer Science 1989. MFCS 1989. Lecture Notes in Computer Science, vol 379. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51486-4_99

Download citation

  • DOI: https://doi.org/10.1007/3-540-51486-4_99

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51486-2

  • Online ISBN: 978-3-540-48176-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics