Advertisement

Interferometric imaging in optical astronomy

  • Gerd Weigelt
Part II Astronomical Observations: Methods and Tools
Part of the Lecture Notes in Physics book series (LNP, volume 333)

Abstract

The atmosphere of the earth restricts the resolution of conventional astronomical imaging to about 1″. Much higher resolution can be obtained by speckle methods. Speckle interferometry, the Knox-Thompson method and the speckle masking method (bispectrum or triple correlation processing) yield diffraction-limited resolution in spite of image degradation by the atmosphere and telescope aberrations. For example, with the ESO 3.6-m telescope a resolution of 0.028″ is attained at a wavelength of 400 nm. The limiting magnitude is about 18. We will outline the theory behind the three methods. High-resolution images and simultaneously the spectrum of each resolution element can be obtained by the objective prism speckle spectroscopy and projection speckle spectroscopy methods. Finally, we will discuss the application of speckle masking to coherent arrays of telescopes. A very interesting example is the 4x8-m ESO VLT, which should yield the fantastic angular resolution of about 2 milli-arcsec.

Keywords

Point Spread Function Speckle Interferometry Optical Transfer Function Triple Correlation Pupil Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin, J.E., Haniff, C.A., Mackay, C.D., Warner, P.J.: 1986, Nature 320, 595Google Scholar
  2. Baier, G., Eckert, J., Hofmann, K.-H., Mauder, W., Schertl, D., Weghorn, H., Weigelt, G.: 1988, The Messenger (ESO) 52, 11Google Scholar
  3. Bates, R.H.T., Gough, P.T., Napier, P.J.: 1973, Astron. Astrophys. 22, 319Google Scholar
  4. Christou, J.C., Freeman, J.D., Roddier, F., McCarthy Jr., D.W., Cobb, M.L., Shaklan, S.B.: 1987, Soc. Photo-Opt. Instr. Eng. 808, 32Google Scholar
  5. Cooke, G.H.: 1956, J. Soo. Motion Pict. Telev. Eng. 65, 151Google Scholar
  6. Dainty, J.C., in Laser Speckle and Related Phenomena, J.C. Dainty, Ed. (Springer, Berlin, 1984)Google Scholar
  7. Grieger, F., Fleischmann, F., Weigelt, G.: 1988, ‘Objective Prism Speckle Spectroscopy and Wideband Projection Speckle Spectroscopy’ in: Proc. High-resolution Imaging by Interferometry, ed. F. Merkle, ESO Conf., Garching, FRG, 15–18 March 1988, p. 225Google Scholar
  8. Hofmann, K.-H., Weigelt, G.: 1986a, Appl. Opt. 25, 4280Google Scholar
  9. Hofmann, K.-H., Weigelt, G.: 1986b, Astron. Astrophys. 167, L15Google Scholar
  10. Hofmann, K.-H., Weigelt, G.: 1986 c, J. Opt. Soc. Am. A 3, 1908Google Scholar
  11. Hofmann, K.-H., Weigelt, G.: 1987, Appl. Opt. 26, 2011Google Scholar
  12. Hofmann, K.-H., Weigelt, G.: 1988, Astron. Astrophys. 203, L21Google Scholar
  13. Jennison, R.C.: 1958, Mon. Not. Roy. Astr. Soc. 118, 276Google Scholar
  14. Kingslake, R.: 1983, Optical System Design, Academic Press, p. 80Google Scholar
  15. Knox, K.T., Thompson, B.J.: 1974, Astrophys. J. Lett. 193, L45Google Scholar
  16. Labeyrie, A.: 1970, Astron. Astrophys. 6, 85Google Scholar
  17. Labeyrie, A.: 1981, ‘Multiple Telescope Inter ferometry’ in: Proc. of the ESO Conf. on Scientific Importance of High Angular Resolution at Infrared and Optical Wavelengths, eds. M.H. Ulrich and K. Kjär, Garching, 24–27 March 1981, p. 225Google Scholar
  18. Liu, C.Y.C., Lohmann, A.W.: 1973, Opt. Commun. 8, 372Google Scholar
  19. Lohmann, A.W., Weigelt, G., Wirnitzer, B.: 1983, Appl. Opt. 22, 4028Google Scholar
  20. Reinheimer, T., Weigelt, G.: 1987, Astron. Astrophys. 176, L17Google Scholar
  21. Reinheimer, T., Fleischmann, F., Grieger, F., Weigelt, G.: 1988, 'speckle Masking with Coherent Arrays', in: Proc. High-resolution Imaging by Interferometry, ed. F. Merkle, ESO Conf., 15–18 March 1988, Garching, FRG, p. 581Google Scholar
  22. Rhodes, W.T., Goodman, J.W.: 1973, J. Opt. Soc. Am. 63, 647Google Scholar
  23. Ribak, E.: 1987, Appl. Opt. 26, 197Google Scholar
  24. Roddier, F., Roddier, C.: 1986, Opt. Commun. 66, 350Google Scholar
  25. Schertl, D., Fleischmann, F., Hofmann, K.-H., Weigelt, G.: 1987, Soc. Photo-Opt. Instr. Eng. 808, 38Google Scholar
  26. Stork, W., Weigelt, G.: 1984, 'speckle Spectroscopy', in: Conf. Proc. of the 13th Congress of the International Commission for Optics, ICO-13, ed. H. Ohzu, Sapporo, Japan, 20–24 Aug. 1984, p. 624Google Scholar
  27. Weghorn, H.: 1988, ‘Untersuchungen zur Speckle Masking-Übertragungsfunktion', Diplomarbeit, Universität Erlangen-NürnbergGoogle Scholar
  28. Weigelt, G.: 1977, Optics Commun. 21, 55Google Scholar
  29. Weigelt, G.: 1981, 'speckle Interferometry, Speckle Holography, Speckle Spectroscopy, and the Reconstruction of High-Resolution Images from Space Telescope Data', in: Proc. Scientific Importance of High-angular Resolution at Infrared and Optical Wavelengths, eds. M.H. Ulrich, K. Kjär, ESO Conf., Garching 1981, p. 95Google Scholar
  30. Weigelt, G., Wirnitzer, B.: 1983, Optics Lett. 8, 389Google Scholar
  31. Weigelt, G., Baier, G., Ebersberger, J., Fleischmann, F., Hofmann, K.-H., Ladebeck, R.: 1986, Opt. Engineering 25, 706Google Scholar
  32. Wirnitzer, B.: 1985, J. Opt. Soc. Am. A 2, 14Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Gerd Weigelt
    • 1
  1. 1.Max-Planck-Institut für RadioastronomieBonnGermany

Personalised recommendations