Une introduction à Prolog III

  • Alain Colmerauer
Data Organizations For Logic Programming
Part of the Lecture Notes in Computer Science book series (LNCS, volume 367)


The Prolog III programming language extends Prolog by redefining the fundamental process at its heart; unification. Prolog III integrates into this mechanism, refined processing of trees and lists, number processing, and processing of complete propositional calculus. We present the specifications and the logico-mathematical model for this new language, in which we replace the notion of unification by the more appropriate concept of constraint resolution. The capabilities thus acquired by the language are illustrated by various examples.


Condition Suivante Nous Venons 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boole George, The Laws of Thought, Dover Publication Inc., 1958.Google Scholar
  2. 2.
    Colmerauer Alain, Henry Kanoui, Robert Pasero et Philippe Roussel, Un système de communication homme-machine en français, Rapport de recherche, Groupe Intelligence Artificielle, Université Aix-Marseille II, 1973.Google Scholar
  3. 3.
    Colmerauer Alain, Prolog in 10 figures, Communications of the ACM, Volume 28, Numéro 12, Décembre 1985, 1296–1310.Google Scholar
  4. 4.
    Colmerauer Alain, Equations and Inequations on Finite and Infinite Trees, Invited lecture, Proceedings of the International Conference on Fifth Generation Computer Systems, Tokyo, Novembre 1984, 85–99.Google Scholar
  5. 5.
    Dantzig George B., Linear Programming and Extensions, Princeton University Press, 1963.Google Scholar
  6. 6.
    Genesereth Michael R. et Matthew L. Ginsberg, Logic Programming, Communications of the ACM, Volume 28, Numéro 9, Septembre 1985, 933–941.Google Scholar
  7. 7.
    Robinson Alan, A machine-oriented logic based on the resolution principle, Journal of the ACM, 12 Decembre 1965.Google Scholar
  8. 8.
    Siegel Pierre, Représentation et utilisation de la connaissance en calcul propositionnel, Thèse de Doctorat d'Etat, Faculté des Sciences de Luminy, Université Aix-Marseille II, Juillet 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Alain Colmerauer
    • 1
  1. 1.Unité de recherche Associée au CNRS 816 Faculté des Sciences de Luminy, Case 901Groupe Intelligence ArtificielleMarseille Cedex 9

Personalised recommendations