A data model for complex objects based on a semantic database model and nested relations

  • Andreas Heuer
Part IV Database Design
Part of the Lecture Notes in Computer Science book series (LNCS, volume 361)


This paper presents an overview of a data model for complex objects called EXTREM (EXTended RElational Model). EXTREM is based on the semantic database model IFO [AbH

EXTREM is compared with other semantic database models. The EXTREM object algebra and user interfaces are briefly summarized.


Object Representation Entity Type Integrity Constraint Semantic Concept Relational Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9 References

  1. [AbB 86]
    Abiteboul, S.; Bidoit, N. Non First Normal Form Relations: An Algebra Allowing Data Restructuring JCSS, 33, 1986, 361–393Google Scholar
  2. [AbH 87]
    Abiteboul, S.; Hull, R. IFO: A Formal Semantic Database Model ACM TODS, 12, 4, 1987, 525–565Google Scholar
  3. [CEC 87]
    Campbell, D.M.; Embley, D.W.; Czejdo, B. Graphical query formulation for an entity-relationship model Data and Knowledge Engineering, 2, 1987, 89–121Google Scholar
  4. [Che 76]
    Chen, P.P. The Entity-Relationship Model — Toward a Unified View of Data ACM TODS, 1, 1, March 1976, 9–36Google Scholar
  5. [Cod 70]
    Codd, E.F. A Relational Model of Data for Large Shared Data Banks CACM, 13, 7, 1970, 377–387Google Scholar
  6. [Cod 79]
    Codd, E.F. • Extending the Database Relational Model to Capture More Meaning • ACM TODS, 4, 4, December 1979, 397–434Google Scholar
  7. [DAF 86]
    Database Architecture Framework Task Group (DAFTG) of the ANSI/X3/SPARC Database System Study Group • Reference Model for DBMS Standardization • ACM SIGMOD RECORD, 15, 1, March 1986, 19–58Google Scholar
  8. [DMB 87]
    Dayal, U.; Manola, F.; Buchmann, U.; et al. • Simplifying Complex Objects: The PROBE Approach to Modelling and Querying Them • Proceedings GI-Fachtagung Daten-banksysteme in Büro, Technik und Wissenschaft, Eds.: H.-J. Schek, G. Schlageter, IFB 136, 1987, 17–37Google Scholar
  9. [Dow 88]
    Dolezyk,M.; Wiebking,U. • Flat Implementation of a Nested Relational Algebra Closed under a Subclass of Permutable Nested Relations • Informatik-Bericht 88/4, Institut für Informatik, TU Clausthal, Workshop on Relational Databases and their Extensions, 1988Google Scholar
  10. [FSTG 85]
    Fischer, P.C.; Saxton, L.V.; Thomas, S.J.; Van Gucht, D. • Interactions between Dependencies and Nested Relational Structures • JCSS, 31, 1985, 343–354Google Scholar
  11. [GuF 86]
    Van Gucht, D.; Fischer, P.C. • Some Classes of Multilevel Relational Structures • ACM PODS, 5, 1986, 60–69Google Scholar
  12. [Heu 87]
    Heuer,A. • Semantic Database Design and Resulting Database Scheme Properties • In:Informatik-Bericht 87/3, Institut für Informatik, TU Clausthal, Workshop on Relational Databases and their Extensions, 1987, 145–183 Google Scholar
  13. [Heu 88]
    Heuer, A. • Exakte Charakterisierung eines semantischen Datenmodells und seiner Operationen durch relationale Konzepte • Dissertation, Institut für Informatik, TU Clausthal, 1988 Google Scholar
  14. [Heu88a]
    Heuer,A. • An Object Algebra and its Connection to the NF2-and Flat Relational Algebra • In:Informatik-Bericht 88/4, Institut für Informatik, TU Clausthal, Workshop on Relational Databases and their Extensions, 1988 Google Scholar
  15. [HuK 87]
    Hull, R.; King, R. • Semantic Database Modeling: Survey, Applications, and Research Issues • ACM Computing Surveys, 19, 3, 1987, 201–260Google Scholar
  16. [JaS 82]
    Jaeschke, G.; Schek, H.-J. • Remarks on the Algebra of Non First Normal Form Relations • ACM PODS, 1, 1982, 124–138Google Scholar
  17. [KCV 83]
    Kanellakis,P.C.; Cosmadakis,S.S.; Vardi,M.Y. • Unary Inclusion Dependencies have Polynomial Time Inference Problems • Proc. ACM Symp. on Theory of Computing, 1983, 264–277 Google Scholar
  18. [LyV 87]
    Lyngbaek, P.; Vianu, V. • Mapping a Semantic Database Model to the Relational Model • ACM SIGMOD RECORD, 16, 3, 1987, 132–142Google Scholar
  19. [Mai 83]
    Maier,D. • The Theory of Relational Databases • London, 1983 Google Scholar
  20. [MMR 86]
    Makowsky, J.A.; Markowitz, V.M.; Rotics, N. • Entity-Relationship-Consistency for Relational Schemas • ICDT 86, LNCS 243, 1986, 306–322 Google Scholar
  21. [MRW 83]
    Maier, D.; Roszenstein, D.; Warren, D.S. • Windows on the World • ACM SIGMOD RECORD, 13, 4, 1983, 68–78Google Scholar
  22. [OzY 87]
    Ozsoyoglu, Z.M.; Yuan, L.-Y. • A New Normal Form for Nested Relations • ACM TODS, 12, 1, 1987, 111–136Google Scholar
  23. [PaS 85]
    Parent, C.; Spaccapietra, S. • An Algebra for a General Entity-Relationship Model • IEEE Transactions on Software Engineering, SE-11, 7, 1985, 634–643Google Scholar
  24. [San 88]
    Sander,P. • Access to Complex Objects in a Rule Based Query Language • In:Informatik-Bericht 88/4, Institut für Informatik, TU Clausthal, Workshop on Relational Databases and their Extensions, 1988 Google Scholar
  25. [ScS 86]
    Schek, H.-J.; Scholl, M.H. • The Relational Model with Relation-valued Attributes • Information Systems, 11, 2, 137–147, 1986Google Scholar
  26. [Ull 83]
    Ullman,J.D. • Principles of Database Systems • London 1983, 2nd Edition Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Andreas Heuer
    • 1
  1. 1.Institut für Informatik, TU ClausthalClausthal-ZellerfeldWest Germany

Personalised recommendations