Dynamical systems, turbulence and the numerical solution of the Navier-Stokes equations

  • R. Temam
Invited lectures
Part of the Lecture Notes in Physics book series (LNP, volume 323)


In this article we have presented a new discretization algorithm called the nonlinear Galerkin method. The algorithm seems robust and well suited for large time integration of the Navier-Stokes equations. The preliminary numerical tests show a substantial gain in computing time. Further numerical experiments and the extension of the method to other equations and to other forms of discretization (finite elements, finite difference...) will be presented elsewhere.


Relative Gain Stokes Operator Small Eddy Inertial Manifold Galerkin Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    G.K. Batchelor, Computation of the energy spectrum in homogeneous, two dimensional turbulence, Phys. Fluids, 12, suppl. 2 (1969) 233–239.Google Scholar
  2. [BV]
    A.V. Babin and M.I. Vishik, Attractors of partial differential equations and estimate of their dimension, Uspekhi Mat. Nauk, 38 (1983) 133–187 (in Russian), Russian Math. Surveys, 38 (1983) 151–213 (in english).Google Scholar
  3. [C1]
    A.J. Chorin, A numerical method for solving incompressible viscous flow problems, J. Comp. Phys., 2 (1967) 12–26.Google Scholar
  4. [C2]
    A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 23 (1968) 341–354.Google Scholar
  5. [CFT1]
    P. Constantin, C. Foias and R. Temam, Attractors representing turbulent flows, Memoirs of A.M.S., 53, 114 (1985), 67+vii pages.Google Scholar
  6. [CFT2]
    P. Constantin, C. Foias and R. Temam, On the dimension of the attractors in two-dimensional turbulence, Physica D, 30 (1988) 284–296.Google Scholar
  7. [CO]
    R. Cohen, Ph. Dissertation, University of Minnesota, Minneapolis, 1988.Google Scholar
  8. [CHKL]
    R. Cohen, R. Hardt, D. Kinderlehrer, S.-Y. Lin and M. Luskin, Minimum energy configurations for liquid crystals: computational results, to appear.Google Scholar
  9. [CHQZ]
    C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods in fluid dynamics, Springer Series in Computational Physics, Springer-Verlag, New York, 1988Google Scholar
  10. [FMT]
    C. Foias, O. Manley and R. Temam, Modelling of the interaction of small and large eddies in two dimensional turbulent flows, Math. Mod. and Num. Anal., (M2AN), 22 (1988) 93–114.Google Scholar
  11. [FST]
    C. Foias, G. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73 (1988) 309–353.Google Scholar
  12. [FT1]
    C. Foias and R. Temam, Some analytic and geometric properties of the evolution Navier-Stokes equations, J. Math. Pures Appl., 58 (1979) 339–368.Google Scholar
  13. [FT2]
    C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, to appear.Google Scholar
  14. [GO]
    D. Gottlieb and S. Orszag, Numerical Analysis of Spectral Mehtods: Theory and Applications, SIAM-CBMS, Philadelphia, 1977.Google Scholar
  15. [K]
    R.H. Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10 (1967) 1417–1423.Google Scholar
  16. [LT1]
    J.L. Lions et R. Temam, Une methode d'éclatement des opérateurs et des contraintes en calcul des variations, C.R. Acad Sci. Paris, Série A, 263 (1966) 563–565.Google Scholar
  17. [LT2]
    J.L. Lions et R. Temam, Eclatement et décentralisation en calcul des variations, Symposium on Optimization, Lecture Notes in Mathematics, vol. 132, Springer-Verlag, 1970, 196–217.Google Scholar
  18. [MT]
    M. Marion and R. Temam, Nonlinear Galerkin methods, submitted to SIAM J. Num. Anal. Google Scholar
  19. [R]
    C. Rosier, Thesis in preparation, Université de Paris-Sud, Orsay, 1989.Google Scholar
  20. [RY]
    B.L. Rohdezestvensky and N.N. Yanenko, Systems of quasilinear equations and their applications to gas dynamics, Mir, Moscow, 1978.Google Scholar
  21. [T1]
    R. Temam, Sur la stabilité et la convergence de la méthode des pas fractionnaires, Ann. Mat.Pura Appl., LXXIV (1968) 191–380.Google Scholar
  22. [T2]
    R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I), Arch. Rat. Mech. Anal., 32, n° 2 (1969) 135–153.Google Scholar
  23. [T3]
    R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II), Arch. Rat. Mech. Anal., 33, n° 5 (1969) 377–385.Google Scholar
  24. [T4]
    R. Temam, Navier-Stokes Equations, 3rd revised edition, North-Holland, 1984. Russian translation edited by N.N. Yanenko.Google Scholar
  25. [T5]
    R. Temam, Variétés inertielles approximatives pour les équations de Navier-Stokes bidimensionnelles, C.R. Acad. Sci. Paris, 306, Série II, 1988, 399–402, and Induced trajectories and approximate inertial manifolds, to appear. *** DIRECT SUPPORT *** A3418252 00003Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • R. Temam
    • 1
    • 2
  1. 1.Laboratoire d'Analyse NumériqueUniversité Paris-SudOrsayFrance
  2. 2.Institute for Applied Mathematics and Scientific ComputingBloomingtonUSA

Personalised recommendations