Skip to main content

Dynamical systems, turbulence and the numerical solution of the Navier-Stokes equations

  • Invited lectures
  • Conference paper
  • First Online:
11th International Conference on Numerical Methods in Fluid Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 323))

Abstract

In this article we have presented a new discretization algorithm called the nonlinear Galerkin method. The algorithm seems robust and well suited for large time integration of the Navier-Stokes equations. The preliminary numerical tests show a substantial gain in computing time. Further numerical experiments and the extension of the method to other equations and to other forms of discretization (finite elements, finite difference...) will be presented elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.K. Batchelor, Computation of the energy spectrum in homogeneous, two dimensional turbulence, Phys. Fluids, 12, suppl. 2 (1969) 233–239.

    Google Scholar 

  2. A.V. Babin and M.I. Vishik, Attractors of partial differential equations and estimate of their dimension, Uspekhi Mat. Nauk, 38 (1983) 133–187 (in Russian), Russian Math. Surveys, 38 (1983) 151–213 (in english).

    Google Scholar 

  3. A.J. Chorin, A numerical method for solving incompressible viscous flow problems, J. Comp. Phys., 2 (1967) 12–26.

    Google Scholar 

  4. A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 23 (1968) 341–354.

    Google Scholar 

  5. P. Constantin, C. Foias and R. Temam, Attractors representing turbulent flows, Memoirs of A.M.S., 53, 114 (1985), 67+vii pages.

    Google Scholar 

  6. P. Constantin, C. Foias and R. Temam, On the dimension of the attractors in two-dimensional turbulence, Physica D, 30 (1988) 284–296.

    Google Scholar 

  7. R. Cohen, Ph. Dissertation, University of Minnesota, Minneapolis, 1988.

    Google Scholar 

  8. R. Cohen, R. Hardt, D. Kinderlehrer, S.-Y. Lin and M. Luskin, Minimum energy configurations for liquid crystals: computational results, to appear.

    Google Scholar 

  9. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods in fluid dynamics, Springer Series in Computational Physics, Springer-Verlag, New York, 1988

    Google Scholar 

  10. C. Foias, O. Manley and R. Temam, Modelling of the interaction of small and large eddies in two dimensional turbulent flows, Math. Mod. and Num. Anal., (M2AN), 22 (1988) 93–114.

    Google Scholar 

  11. C. Foias, G. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73 (1988) 309–353.

    Google Scholar 

  12. C. Foias and R. Temam, Some analytic and geometric properties of the evolution Navier-Stokes equations, J. Math. Pures Appl., 58 (1979) 339–368.

    Google Scholar 

  13. C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, to appear.

    Google Scholar 

  14. D. Gottlieb and S. Orszag, Numerical Analysis of Spectral Mehtods: Theory and Applications, SIAM-CBMS, Philadelphia, 1977.

    Google Scholar 

  15. R.H. Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10 (1967) 1417–1423.

    Google Scholar 

  16. J.L. Lions et R. Temam, Une methode d'éclatement des opérateurs et des contraintes en calcul des variations, C.R. Acad Sci. Paris, Série A, 263 (1966) 563–565.

    Google Scholar 

  17. J.L. Lions et R. Temam, Eclatement et décentralisation en calcul des variations, Symposium on Optimization, Lecture Notes in Mathematics, vol. 132, Springer-Verlag, 1970, 196–217.

    Google Scholar 

  18. M. Marion and R. Temam, Nonlinear Galerkin methods, submitted to SIAM J. Num. Anal.

    Google Scholar 

  19. C. Rosier, Thesis in preparation, Université de Paris-Sud, Orsay, 1989.

    Google Scholar 

  20. B.L. Rohdezestvensky and N.N. Yanenko, Systems of quasilinear equations and their applications to gas dynamics, Mir, Moscow, 1978.

    Google Scholar 

  21. R. Temam, Sur la stabilité et la convergence de la méthode des pas fractionnaires, Ann. Mat.Pura Appl., LXXIV (1968) 191–380.

    Google Scholar 

  22. R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I), Arch. Rat. Mech. Anal., 32, n° 2 (1969) 135–153.

    Google Scholar 

  23. R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II), Arch. Rat. Mech. Anal., 33, n° 5 (1969) 377–385.

    Google Scholar 

  24. R. Temam, Navier-Stokes Equations, 3rd revised edition, North-Holland, 1984. Russian translation edited by N.N. Yanenko.

    Google Scholar 

  25. R. Temam, Variétés inertielles approximatives pour les équations de Navier-Stokes bidimensionnelles, C.R. Acad. Sci. Paris, 306, Série II, 1988, 399–402, and Induced trajectories and approximate inertial manifolds, to appear. *** DIRECT SUPPORT *** A3418252 00003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

D. L. Dwoyer M. Y. Hussaini R. G. Voigt

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Temam, R. (1989). Dynamical systems, turbulence and the numerical solution of the Navier-Stokes equations. In: Dwoyer, D.L., Hussaini, M.Y., Voigt, R.G. (eds) 11th International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol 323. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51048-6_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-51048-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51048-2

  • Online ISBN: 978-3-540-46141-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics