Multigrid for the steady-state incompressible Navier-Stokes equations: A survey

  • J. Linden
  • G. Lonsdale
  • B. Steckel
  • K. Stüben
Invited Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 323)


Multigrid Method Smoothing Factor Multigrid Solver Smoothing Scheme Smoothing Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abdalass, E.M.: Resolution performante du probleme de Stokes par mini-elements, maillages auto-adaptatifs et methodes multigrilles — applications. Ph.D. Thesis, Ecole Centrale de Lyon, 1987Google Scholar
  2. [2]
    Barcus, M.; Peric, M.; Scheuerer, G.: A control volume based full multigrid procedure for the prediction of two-dimensional, laminar, incompressible flows. Proceedings of the 7th GAMM-Conference on Numerical Methods in Fluid Mechanics, Louvain-la-Neuve, Belgium, Vieweg-Verlag, 1987Google Scholar
  3. [3]
    Brandt, A.: Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics. Monograph, GMD-Studien 85, 1984Google Scholar
  4. [4]
    Brandt, A.; Dinar, N.: Multigrid solutions to elliptic flow problems. In “Numerical Methods for PDE” (Parter, S.V., ed.), Academic Press, 1984Google Scholar
  5. [5]
    Brezzi, F.; Pitkäranta, J.: On the stabilization of finite-element approximations of the Stokes equations. In “Efficient Solutions of Elliptic Systems” (Hackbusch, W., ed.), Notes on Numerical Fluid Mechanics 10, Vieweg-Verlag, 1984, pp.11–19Google Scholar
  6. [6]
    Fuchs, L.; Zhao, H.S.: Solution of three-dimensional viscous incompressible flows by a multigrid method. Int. J. Numer. Methods in Fluids 4, 1984, pp. 539–555Google Scholar
  7. [7]
    Fuchs, L.: Multigrid schemes for incompressible flows. In “Efficient Solution of Elliptic Systems” (Hackbusch, W., ed.), Notes on Numerical Fluid Mechanics 10, Vieweg Verlag, 1984, pp. 38–51Google Scholar
  8. [8]
    Linden, J.; Steckel, B.; Stüben, K.: Parallel multigrid solution of the Navier-Stokes equations on general 2D-domains. To appear in: Parallel Computing 1988, North Holland (in pressGoogle Scholar
  9. [9]
    Lonsdale, G.: Solution of a rotating Navier-Stokes problem by a nonlinear multigrid algorithm. J. Comp. Phys. 74, 1988, pp. 177–190Google Scholar
  10. [10]
    Niestegge, A.; Witsch, K.: Analysis of a multigrid Stokes solver. To be submitted to AMCGoogle Scholar
  11. [11]
    Patankar, S.V.: Numerical heat transfer and fluid flow. Hemisphere, Washington DC-New York, 1980Google Scholar
  12. [12]
    Peric, M.: A finite volume method for the prediction of three-dimensional fluid flow in complex ducts. Ph.D. Thesis, Mech. Eng. Dept., Imperial College, London, 1985Google Scholar
  13. [13]
    Shaw, G.J.; Sivalagonathan, S.: On the smoothing properties of the SIMPLE pressurecorrection algorithm. Int. J. Numer. Methods Fluids 8, 1988, pp.441–461Google Scholar
  14. [14]
    Solchenbach, K.; Trottenberg, U.: On the multigrid acceleration approach in computational fluid dynamics. GMD-Arbeitspapier 251, 1987Google Scholar
  15. [15]
    Stüben, K.; Linden, J.: Multigrid methods: An overview with emphasis on grid generation processes. Proceedings “Numerical Grid Generation in Computational Fluid Dynamics” (Häuser, J.; Taylor, C., eds.), Pineridge Press, Swansea, 1986, pp. 483–509Google Scholar
  16. [16]
    Stüben, K; Trottenberg, U.: Multigrid methods: Fundamental algorithms, model problem analysis and applications. In “Multigrid Methods” (Hackbusch, W.; Trottenberg, U., eds.), Lecture Notes in Mathematics 960, Springer-Verlag, 1982, pp. 1–176Google Scholar
  17. [17]
    Vanka, S.P.: Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. J. Comp. Phys. 65, 1986, pp.138–156Google Scholar
  18. [18]
    Wittum, G.: Distributive Iterationen für indefinite Systeme als Glätter in Mehrgitterverfahren am Beispiel der Stokes-und Navier-Stokes-Gleichungen mit Schwerpunkt auf unvollständigen Zerlegungen. Dissertation, University of Kiel, 1986Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • J. Linden
    • 1
  • G. Lonsdale
    • 1
  • B. Steckel
    • 1
  • K. Stüben
    • 1
  1. 1.GMD-FITSt. Augustin 1West Germany

Personalised recommendations