CFD for hypersonic airbreathing aircraft

  • Ajay Kumar
Invited Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 323)


A general discussion is given on the use of advanced computational fluid dynamics (CFD) in analyzing the hypersonic flow field around an airbreathing aircraft. Unique features of the hypersonic flow physics are presented and an assessment is given of the current algorithms in terms of their capability to model hypersonic flows. Several examples of advanced CFD applications are then presented.


Mach Number AIAA Paper Hypersonic Flow Pressure Contour Hypersonic Vehicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, J. D., Jr.: A Survey of Modern Research in Hypersonic Aerodynamics. AIAA Paper 84-1578, 1984.Google Scholar
  2. 2.
    Henry, J. R.; and Anderson, G. Y.: Design Considerations for the Airframe Integrated Scramjet. NASA TM-X-2895, 1973.Google Scholar
  3. 3.
    White, M. E.; Drummond, J. P.; and Kumar, A.: Evolution and Status of CFD Techniques for Scramjet Applications. J. of Propulsion and Power, vol. 3, no. 5, Sept.–Oct. 1987, pp. 423–439.Google Scholar
  4. 4.
    Kumar, A.; Graves, R. A., Jr.; Weilmuenster, K. J.; and Tiwari, S. N.: Laminar and Turbulent Flow Solutions with Radiation and Ablation Injection for Jovian Entry. Aerothermodynamics & Planetary Entry, Progress in Astronautics and Aeronautics, vol. 77, edited by A. L. Crosbie, AIAA, New York, 1981, pp. 351–373.Google Scholar
  5. 5.
    Dwoyer, D. L.; and Kumar, A.: Computational Analysis of Hypersonic Airbreathing Aircraft Flow Fields. AIAA Paper 87-0279, 1987.Google Scholar
  6. 6.
    Kumar, A.; Bushnell, D. M.; and Hussaini, M. Y.: A Mixing Augmentation Technique for Hypervelocity Scramjets. AIAA Paper 87-1882, 1987.Google Scholar
  7. 7.
    Drummond, J. P.; Rogers, R. C.; and Hussaini, M. Y.: A Detailed Numerical Study of a Supersonic Reacting Mixing Layer. AIAA Paper 86-1427, 1986.Google Scholar
  8. 8.
    Uneshi, K.; Rogers, R. C.; and Northam, G. B.: Three-Dimensional Computations of Transverse Hydrogen Jet Combustion in a Supersonic Airstream. AIAA Paper 87-0089, 1987.Google Scholar
  9. 9.
    Sinha, N.; and Dash, S. M.: Parabolized Navier-Stokes Analysis of Ducted Turbulent Mixing Problems with Finite-Rate Chemistry. AIAA Paper 86-0004, 1986.Google Scholar
  10. 10.
    Chitsomboon, T.; Kumar, A.; Drummond, J. P.; and Tiwari, S. N.: Numerical Study of Supersonic Combustion Using a Finite-Rate Chemistry Model. AIAA Paper 86-0309, 1986.Google Scholar
  11. 11.
    Schiff, L. B.; and Steger, J. L.: Numerical Simulation of Steady Supersonic Viscous Flow. AIAA Paper 79-0130, 1979.Google Scholar
  12. 12.
    Kaul, U. K.; and Chaussee, D. S.: AFWAL Parabolized Navier-Stokes Code: 1983 AFWAL/NASA Merged Baseline Version. AFWAL-TR-83-3118, May 1984.Google Scholar
  13. 13.
    Gnoffo, P. A.: Hypersonic Flows Over Biconics Using a Variable-Effective Gamma, Parabolized Navier-Stokes Code. AIAA Paper 83-1666, 1983.Google Scholar
  14. 14.
    Gielda, T.; and McRae, D.: An Accurate, Stable, Explicit, Parabolized Navier-Stokes Solver for High-Speed Flows. AIAA Paper 86-1116, 1986.Google Scholar
  15. 15.
    Chitsomboon, T.; Kumar, A.; and Tiwari, S. N.: A Parabolized Navier-Stokes Algorithm for Separated Supersonic Internal Flows. AIAA Paper 85-1411, 1985.Google Scholar
  16. 16.
    MacCormack, R. W.: The Effect of Viscosity in Hyper-Velocity Impact Cratering. AIAA Paper 69-354, 1969.Google Scholar
  17. 17.
    Kumar, A.: Numerical Simulation of Scramjet Inlet Flow Fields. NASA TP-2517, May 1986.Google Scholar
  18. 18.
    Beam, R.; and Warming, R. F.: An Implicit Factored Scheme for the Compressible Navier-Stokes Equations. AIAA J., vol. 16, April 1978, pp. 393–402.Google Scholar
  19. 19.
    Jameson, A.; Schmidt, W.; and Turkel, E.: Numerical Solutions of the Euler Equations by Finite-Volume Methods Using Runge-Kutta Time-Stepping Schemes. AIAA Paper 81-1259, 1981.Google Scholar
  20. 20.
    Vatsa, V. N.: Accurate Numerical Solutions for Transonic Viscous Flow Over Finite Wings. J. of Aircraft, vol. 24, no. 6, June 1987, pp. 377–385.Google Scholar
  21. 21.
    Thomas, J. L.; and Walters, R. W.: Upwind Relaxation Algorithms for the Navier-Stokes Equations. AIAA Paper 85-1501-CP, 1985.Google Scholar
  22. 22.
    Chakravarthy, S. R.; Szema, K. Y.; Goldberg, U. C.; and Gorski, J. L.: Application of a New Class of High Accuracy TVD Schemes to the Navier-Stokes Equations. AIAA Paper 85-0165, 1985.Google Scholar
  23. 23.
    Gnoffo, P. A.; McCandless, R. S.; and Yee, H. C.: Enhancements to Program LAURA for Computation of 3-D Hypersonic Flow. AIAA Paper 87-0280, 1987.Google Scholar
  24. 24.
    Thompson, J. F.: Numerical Grid Generation. North-Holland, New York, 1982.Google Scholar
  25. 25.
    Rudy, D. H.; Kumar, A.; Thomas, J. L.; Gnoffo, P. A.; and Chakravarthy, S. R.: A Comparative Study and Validation of Upwind and Central-Difference Navier-Stokes Codes for High-Speed Flows. AGARD Symposium on Validation of Computational Fluid Dynamics, Lisbon, Portugal, May 1988.Google Scholar
  26. 26.
    Barber, T. J.; and Cox, G. B., Jr.: Hypersonic Vehicle Propulsion: A CFD Application Case Study. AIAA Paper 88-0475, 1988.Google Scholar
  27. 27.
    Kumar, A.: Numerical Simulation of Flow Through Scramjet Inlets Using a Three-Dimensional Navier-Stokes Code. AIAA Paper 85-1664, 1985.Google Scholar
  28. 28.
    Richardson, P. F.; Parlette, E. B.; Morrison, J. H.; Switzer, G. F.; Dilley, A. D.; and Eppard, W. M.: Data Comparison Between a 3-D Navier-Stokes Analysis and Experiment for the McDonnell Douglas Lifting Body: Generic Option #2. Paper No. 52, Fourth National Aero-Space Plane Symposium, Feb. 1988.Google Scholar
  29. 29.
    Erlebacher, G.; Kumar, A.; Anderson, E. C.; Rogers, R. C.; Dwoyer, D. L.; Salas, M. D.; and Harris, J. E.: A Computational Design Procedure for Actively Cooled Hypersonic Wind-Tunnel Nozzles Subject to Wall Shape Constraints. Proceedings of Computational Fluid Dynamics in Aerospace Design Workshop, University of Tennessee Space Institute, UTSI Pub. E02-4005-029-85, June 1985.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Ajay Kumar
    • 1
  1. 1.NASA Langley Research CenterHamptonUSA

Personalised recommendations