Advertisement

Low-storage implicit upwind-FEM schemes for the Euler equations

  • A. Dervieux
  • L. Fezoui
  • H. Steve
  • J. Periaux
  • B. Stoufflet
Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 323)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. ANGRAND-J, EHREL, Vectorized Finite Element codes for compressible Flows, INRIA research report no 622 (1987).Google Scholar
  2. [2]
    V. BILLEY-A. DERVIEUX-L, FEZOUI-J, PERIAUX-V, SELMIN-B, STOUFFLET, Recent improvements in Galerkin and upwind Euler solvers and appplication to 3-D transonic flow in aircraft design, 8th Int. Conf. on Computing Methods in Applied Sciences and Engineering, Versailles, dec. 14–18, 1987, to be published by North Holland.Google Scholar
  3. [3]
    L. FEZOUI, Résolution des équations d'Euler par un schéma de Van Leer en éléments finis, INRIA Research Report, no 358 (1985)Google Scholar
  4. [4]
    L. FEZOUI-B. STOUFFLET, A class of implicit upwind schemes for Euler simulations with unstructured meshes, INRIA Research Report, no 517 (1986).Google Scholar
  5. [5]
    A. JAMESON-T.J. BAKER, Improvements to fine aircraft method, AIAA paper 87-0452 Reno.Google Scholar
  6. [6]
    M. MALLET-J, PERIAUX-B. STOUFFLET, Convergence acceleration of finite element methods for the solution of the Euler and Navier-Stokes equations, 8th GAMM Conference on Numerical Methods in Fluid Mechanics, proc. to be published by Vieweg (1988)Google Scholar
  7. [7]
    S. OSHER-F, SOLOMON, Upwind difference schemes for hyperbolic systems of conservation laws, Journal Math, comp, (1982)Google Scholar
  8. [8]
    Y, SAAD-M.H. SCHULTZ, “GMRES”: a generalized minimal residual algorithm for solving nonsymmetric linear systems, Research Report YALEU/DCS RR-254, (1983)Google Scholar
  9. [9]
    J. STEGER-R.F. WARMING, Flux-vector splitting for the inviscid gas dynamic equations with applications to finite difference methods, Journal Comp, Physics, vol 40, no 2, pp 263–293 (1981).Google Scholar
  10. [10]
    H. STEVE, Efficient implicit solvers for the resolution of Euler equation in finite element methods, INRIA Research Report, (Thesis to appear).Google Scholar
  11. [11]
    B. STOUFFLET-J. PERIAUX-L, FEZOUI-A, DERVIEUX, Numerical simulation of 3-D hypersonic Euler flow around space vehicules using adapted-finite-elements, AIAA paper 87-0560Google Scholar
  12. [12]
    B. van Leer, Towards the ultimate conservative difference scheme. The quest of monotonicity. Lecture Notes in Physics, Vol 18 pp 163 (1972).Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • A. Dervieux
  • L. Fezoui
  • H. Steve
    • 1
  • J. Periaux
  • B. Stoufflet
    • 2
  1. 1.INRIA Sophia-AntipolisValbonneFrance
  2. 2.AMD-BA DGT-DEA BP 300Saint-CloudFrance

Personalised recommendations