Low-storage implicit upwind-FEM schemes for the Euler equations

  • A. Dervieux
  • L. Fezoui
  • H. Steve
  • J. Periaux
  • B. Stoufflet
Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 323)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. ANGRAND-J, EHREL, Vectorized Finite Element codes for compressible Flows, INRIA research report no 622 (1987).Google Scholar
  2. [2]
    V. BILLEY-A. DERVIEUX-L, FEZOUI-J, PERIAUX-V, SELMIN-B, STOUFFLET, Recent improvements in Galerkin and upwind Euler solvers and appplication to 3-D transonic flow in aircraft design, 8th Int. Conf. on Computing Methods in Applied Sciences and Engineering, Versailles, dec. 14–18, 1987, to be published by North Holland.Google Scholar
  3. [3]
    L. FEZOUI, Résolution des équations d'Euler par un schéma de Van Leer en éléments finis, INRIA Research Report, no 358 (1985)Google Scholar
  4. [4]
    L. FEZOUI-B. STOUFFLET, A class of implicit upwind schemes for Euler simulations with unstructured meshes, INRIA Research Report, no 517 (1986).Google Scholar
  5. [5]
    A. JAMESON-T.J. BAKER, Improvements to fine aircraft method, AIAA paper 87-0452 Reno.Google Scholar
  6. [6]
    M. MALLET-J, PERIAUX-B. STOUFFLET, Convergence acceleration of finite element methods for the solution of the Euler and Navier-Stokes equations, 8th GAMM Conference on Numerical Methods in Fluid Mechanics, proc. to be published by Vieweg (1988)Google Scholar
  7. [7]
    S. OSHER-F, SOLOMON, Upwind difference schemes for hyperbolic systems of conservation laws, Journal Math, comp, (1982)Google Scholar
  8. [8]
    Y, SAAD-M.H. SCHULTZ, “GMRES”: a generalized minimal residual algorithm for solving nonsymmetric linear systems, Research Report YALEU/DCS RR-254, (1983)Google Scholar
  9. [9]
    J. STEGER-R.F. WARMING, Flux-vector splitting for the inviscid gas dynamic equations with applications to finite difference methods, Journal Comp, Physics, vol 40, no 2, pp 263–293 (1981).Google Scholar
  10. [10]
    H. STEVE, Efficient implicit solvers for the resolution of Euler equation in finite element methods, INRIA Research Report, (Thesis to appear).Google Scholar
  11. [11]
    B. STOUFFLET-J. PERIAUX-L, FEZOUI-A, DERVIEUX, Numerical simulation of 3-D hypersonic Euler flow around space vehicules using adapted-finite-elements, AIAA paper 87-0560Google Scholar
  12. [12]
    B. van Leer, Towards the ultimate conservative difference scheme. The quest of monotonicity. Lecture Notes in Physics, Vol 18 pp 163 (1972).Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • A. Dervieux
  • L. Fezoui
  • H. Steve
    • 1
  • J. Periaux
  • B. Stoufflet
    • 2
  1. 1.INRIA Sophia-AntipolisValbonneFrance
  2. 2.AMD-BA DGT-DEA BP 300Saint-CloudFrance

Personalised recommendations