Application of a second-order projection method to the study of shear layers

  • John B. Bell
  • Harland M. Glaz
  • Jay M. Solomon
  • William G. Szymczak
Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 323)


Shear Layer Vorticity Contour Incompressible Euler Equation Godunov Scheme Nonlinear Convection Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Chorin, “On the Convergence of Discrete Approximations to the Navier-Stokes Equations,” Math. Comp., vol. 23, pp. 341–353, April 1969.Google Scholar
  2. 2.
    J. B. Bell, P. Colella, and H. M. Glaz, A Second-Order Projection Method for the Incompressible Navier-Stokes Equations, submitted for publication.Google Scholar
  3. 3.
    M. Fortin, “Numerical Solutions of the Steady State Navier-Stokes Equations,” in Numerical Methods in Fluid Dynamics, ed. J. J. Smolderen, AGARD-LS-48, 1972.Google Scholar
  4. 4.
    A. B. Stephens, J. B. Bell, J. M. Solomon, and L. B. Hackerman, “A Finite Difference Galerkin Formulation of the Incompressible Navier-Stokes Equations,” J. Comp. Phys., vol. 53, pp. 152–172, Jan. 1984.Google Scholar
  5. 5.
    J. M. Solomon and W. G. Szymczak, “Finite Difference Solutions for the Incompressible Navier-Stokes Equations using Galerkin Techniques,” Fifth IMACS International Symposium on Computer Methods for Partial Differential Equations, Lehigh University, June 19–21, 1984.Google Scholar
  6. 6.
    P. Colella, “A Multidimensional Second Order Godunov Scheme for Conservation Laws,” LBL-17023, Lawrence Berkeley Laboratory, to appear in J. Comp. Phys..Google Scholar
  7. 7.
    C.M. Ho and L.S. Huang, “Subharmonics and Vortex Merging in Mixing Layers,” J. Fluid Mech., vol. 119, pp. 443–473, 1982.Google Scholar
  8. 8.
    P.A. Monkewitz and P. Huerre, “Influence of the Velocity Ratio on the Spatial Instability of Mixing Layers,” Physics of Fluids, vol. 25, pp. 1137–1143, 1982.Google Scholar
  9. 9.
    A.L. Kuhl, K.-Y. Chien, R.E. Ferguson, H.M. Glaz, and P. Colella, “Inviscid Dynamics of Unstable Shear Layers,” RDA-TR-161604-004, R&D Associates, Marina del Rey, April 1988.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • John B. Bell
    • 1
  • Harland M. Glaz
    • 2
  • Jay M. Solomon
    • 3
  • William G. Szymczak
    • 1
  1. 1.Lawrence Livermore LaboratoryLivermoreUSA
  2. 2.University of MarylandCollege ParkUSA
  3. 3.Naval Surface Warfare CenterSilver SpringUSA

Personalised recommendations