A pressure gradient field spectral collocation evaluation for 3-D numerical experiments in incompressible fluid dynamics

  • M. Azaiez
  • G. Labrosse
  • H. Vandeven
Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 323)


The Stokes system can be solved within the framework of spectral methods to get accurate solenoidal velocity fields. The present drawback of the numerical procedure lies in the pressure iterative loop. Although its convergence is surprisingly good, it will not be a refinement to conceive an accelerated algorithms, particularly for unsteady 3-D incompressible fluid flows.


Spectral Space Spurious Mode Incompressible Fluid Flow Spectral Accuracy Chebyshev Collocation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1)-.
    D.GOTTLIEB, S.A.ORZAG (1977), “Numerical analysis of spectral methods theory and applications.” SIAM, Philadephia.Google Scholar
  2. (2)-.
    D.B.HAIDVOGEL, T.ZANG (1979). “The accurate solution of Poisson's equation by expansion in Chebychev polynomials.”, J. Comp. Phys, 30, 167–180Google Scholar
  3. (2a)-.
    P. HALDENWANG, G. LABROSSE, S. ABBOUDI, M.DEVILLE (1984). “Chebyshev 3-D spectral and 2-D pseudospectral solvers for the Helmholtz equation.” J. Comp. Phys., 55, 115–128.Google Scholar
  4. (3)-.
    C.BERNARDI, Y.Maday, B. METIVET (1987), “Calcul de la pression dans lit résolution spectrale du probldme de Stokes.” La Recherche Aérospatiale, n° 1987-1. 1–21.Google Scholar
  5. (4)-.
    P.HALDENWANG (1984), “Résolution tridimensionnelle des équations de Navier-Stokes per methodes spectrales Tchebycheff. application à la convection naturelle.” Ph.D.Thèse. Université de Provence.-P. HALDENWANG, G. LABROSSE (1986), proceedings of the 6th Int.Symp. on Finite Element Methods in Flow Problems, ed. by M.O.Bristeau, B.Glowinski, A.Hausel, J. Perfaux, 261–266Google Scholar
  6. (5)-.
    O.AXELSON (1980), “Conjugate gradient type methods for unsymetric and inconsistent systems or linear equations.” Linear algebra and its applications, 29, 1–16Google Scholar
  7. (6)-.
    F. OREZZI (1974), “On the existence uniqueness and approximation of saddle-point problems arising from Lagrange multipliers.”, RAIRO Anal. Numer. 8/R2, 129–151.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. Azaiez
    • 2
    • 1
  • G. Labrosse
    • 1
  • H. Vandeven
    • 3
  1. 1.Laboratoire FAST, UA CNRS Dept. HydrodynamiqueUniversité de Paris SudOrsay CedexFrance
  2. 2.Laboratoire d'Analyse NumériqueUniversité Paris XI, UA CNRSFrance
  3. 3.Laboratoire d'Analyse NumériqueUniversité Paris VI, UA CNRSFrance

Personalised recommendations