Computational fluid dynamics — A personal view

  • M. Y. Hussaini
Invited Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 323)


This paper provides a personal view of computational fluid dynamics. The main theme is divided into two categories — one dealing with algorithms and engineering applications and the other with scientific investigations. The former category may be termed computational aerodynamics with the objective of providing reliable aerodynamic or engineering predictions. The latter category is essentially basic research where the algorithmic tools are used to unravel and elucidate fluid dynamic phenomena hard to obtain in a laboratory. While dealing with the algorithms, only the underlying principles are discussed and the engineering applications are omitted. A personal critique of the numerical solution techniques for both compressible and incompressible flows is included. The discussion on scientific investigations deals in particular with transition and turbulence. In conclusion, some challenges to computational fluid dynamics are mentioned, the grand challenge being turbulence and reacting flows.


Euler Equation Compressible Flow Contact Discontinuity Viscous Term Euler Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. P. Boris and D. L. Book, J. Comput. Phys. 11 (1973), 38.Google Scholar
  2. [2]
    C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag (1987).Google Scholar
  3. [3]
    S. R. Chakravarthy, NASA Contractor Report 4043 (1987).Google Scholar
  4. [4]
    A. J. Chorin, J. Comput. Phys. 2 (1967), 12–26.Google Scholar
  5. [5]
    A. J. Chorin, Math. Comput. 22 (1968), 745–762.Google Scholar
  6. [6]
    A. J. Chorin, J. Comput. Phys. 22 (1976), 517–536.Google Scholar
  7. [7]
    M. Fortin, R. Peyret and R. Temam, J. Mech., V. 10 (1971), 357–390.Google Scholar
  8. [8]
    S. K. Godunov, Mat. Sb. 47 (1959), 271–306.Google Scholar
  9. [9]
    A. Harten and G. Zwas, J. Comput. Phys. 9 (1972), 568.Google Scholar
  10. [10]
    A. Harten, AEC R and D Report, COO-3077-50, New York University (1974).Google Scholar
  11. [11]
    A. Harten, Math. Comput. 32 (1978), 363–389.Google Scholar
  12. [12]
    A. Harten, J. Comput. Phys. 49 (1983), 357.Google Scholar
  13. [13]
    A. Harten and S. Osher, SIAM J. Numer. Anal., V. 24 (1987), 279.Google Scholar
  14. [14]
    A. Harten, B. Engquist, S. Osher, S. Chakravarthy, J. Comput. Phys., V. 71 (1987), 231.Google Scholar
  15. [15]
    F. H. Harlow and J. E. Welsh, Phys. Fluids 8 (1965), 2182–89.Google Scholar
  16. [16]
    A. Jameson, AIAA Paper 87-1184 (1987).Google Scholar
  17. [17]
    P. D. Lax and B. Wendroff, Comm. Pure Appl. Math. 13 (1960), 217–237.Google Scholar
  18. [18]
    P. D. Lax, J. Stat. Phys., V. 43 (1986), 749–756.Google Scholar
  19. [19]
    R.W. MacCormack, AIAA paper AIAA 69-354 (1969).Google Scholar
  20. [20]
    A. Majda and S. Osher, Comm. Pure Appl. Math. 32 (1979), 797–838.Google Scholar
  21. [21]
    G. Moretti, Computers and Fluids, 7 (1979), 191–205.Google Scholar
  22. [22]
    J. von Neumann and R. D. Richtmyer (1950), vide R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, Interscience, New York, 1967.Google Scholar
  23. [23]
    R.-H. Ni, AIAA J. 20 (1982), 1565–1571.Google Scholar
  24. [24]
    NRC Report, Current Capabilities and Future Directions in Computational Fluid Dynamics, National Academy Press, Washington, D. C. (1986).Google Scholar
  25. [25]
    S. A. Orzag, J. Fluid Mech., V. 49 (1971), 75–112.Google Scholar
  26. [26]
    S. A. Orszag and L. C. Kells, J. Fluid Mech. 96 (1980), 159–205.Google Scholar
  27. [27]
    K. G. Powell, Vortical Solutions of the Conical Euler Equations, Ph.D. thesis, MIT, 1987.Google Scholar
  28. [28]
    R. D. Richtmyer, vide R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, Interscience, New York, 1967.Google Scholar
  29. [29]
    P. L. Roe, Lecture Notes in Physics 141 (1980), 354–359.Google Scholar
  30. [30]
    M. D. Salas, private communication.Google Scholar
  31. [31]
    J. L. Steger and R. F. Warming, J. Comput. Phys. 40 (1981), 263–293.Google Scholar
  32. [32]
    W. G. Strang, SIAM J. Numer. Anal. 5 (1968), 506.Google Scholar
  33. [33]
    R. Temam, Bull. Soc. Math. Fr. 96 (1968), 115–152.Google Scholar
  34. [34]
    B. van Leer, Lecture Notes in Physics 18 (1973), 163–168.Google Scholar
  35. [35]
    B. van Leer, J. Comput. Phys. V. 32 (1979), 101.Google Scholar
  36. [36]
    B. van Leer, Lecture Notes in Physics 170 (1982), 507.Google Scholar
  37. [37]
    K. G. Wilson, summary talk delivered at the Conference on Computational Physics held at the International Centre for Theoretical Physics, Trieste, Oct. 29–31, (1986).Google Scholar
  38. [38]
    P. R. Woodward and P. L. Colella, J. Comput. Phys. 54 (1984), 115–173.Google Scholar
  39. [39]
    S. T. Zalesak, in Advances in Computer Methods for Partial Differential EquationsIV Eds. R. Vichnevetsky and R. S. Stepleman, Rutgers University (1981).Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. Y. Hussaini
    • 1
  1. 1.Institute for Computer Applications in Science and EngineeringNASA Langley Research CenterHampton

Personalised recommendations