Skip to main content

Multichannel complex scaled Titchmarsh Weyl theory a model for diatomic fragmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 325))

Abstract

A single channel Titchmarsh-Weyl resonance scattering theory is extended to a coupled equations formulation. It is demonstrated that the intrinsic simplicity of the theory persists also in the multichannel case. Explicit theorems in connection with the multichannel case are proved, and simple Wronskian expressions for resonant scattering wave functions and related physical quantities are derived. The computational features are illustrated by an application to a non-trivial curve crossing problem. The numerical results display the detailed behaviour of resonance poles in the complex plane. The relevant diabatic and/or adiabatic limits as well as the effect of the strength of the interaction on the resonance structures are studied. Applications to the modeling of laser photofragment spectroscopy data are finally mentioned

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Weyl, Ann. Math. 68, 220 (1910).

    Article  Google Scholar 

  2. E. A. Coddington and N. Levinsson, Theory of Ordinary Differential Equations, McGraw-Hill New York, 1955.

    Google Scholar 

  3. J. Aquilar and J. M. Combes, Commun. Math. Phys. 22, 269 (1971).

    Google Scholar 

  4. E. Balslev and J. M. Combes, Commun. Math. Phys. 22, 280 (1971).

    Google Scholar 

  5. B. Simon, Ann. Math. 97, 247 (1973).

    Google Scholar 

  6. C. van Winter, J. Math. Anal. Appl. 47, 633 (1974).-C. van Winter, J. Math. Anal. Appl. 47, 368 (1974).

    Google Scholar 

  7. R. T. Pack and J. O. Hirschfelder, J. Chem. Phys. 49, 4009 (1970).

    Google Scholar 

  8. R. T. Pack and J. O. Hirschfelder, J. Chem. Phys. 52, 521 (1970).

    Google Scholar 

  9. A. Macias and A. Riera, Phys. Rep. 90, 299 (1982).

    Google Scholar 

  10. H. Lefebvre-Brion, in Atoms, Molecules and Lasers, International Atomic Energy, Vienna (1974), p.411.

    Google Scholar 

  11. K. Morokuma and T. F. George, J. Chem. Phys. 59, 1959 (1973).

    Google Scholar 

  12. P. Pechukas, T. F. George, K. Morokuma, F. J. McLaferty and J. R. Laing, J. Chem. Phys. 64, 1099 (1976).

    Google Scholar 

  13. J. Simons, J. Chem. Phys. 75, 2465 (1981); P. O. Löwdin, Int. J. Quantum Chem. 27, 494 (1985).

    Google Scholar 

  14. M. Rittby, N. Elander and E. Brändas, Phys. Rev. A24, 1636 (1981).

    Google Scholar 

  15. M. Rittby, N. Elander and E. Brändas, Mol. Phys. 45, 553 (1982).

    Google Scholar 

  16. M. Rittby, N. Elander and E. Brändas, Chem. Phys. 87, 55 (1984).

    Google Scholar 

  17. M. Hehenberger, E. Brändas and N. Elander, Int. J. Quantum Chem. Symp. 12, 67 (1978).

    Google Scholar 

  18. N. Elander, M. Rittby and E. Brändas Int. J. Quantum Chem. 22, 445 (1982).

    Google Scholar 

  19. M. Rittby, N. Elander, E. Brändas and A. Barany, J. Phys. B17, L677 (1984).

    Google Scholar 

  20. E. Brändas, M. Rittby and N. Elander, J. Math. Phys. 26, 2648 (1985).

    Google Scholar 

  21. E. Engdahl, E. Brändas, M. Rittby and N. Elander, Phys. Rev A. 37, 377 (1988).

    PubMed  Google Scholar 

  22. B. R. Junker, Adv. Atom. and Molec. Phys. 18, 207 (1982).

    Google Scholar 

  23. W. P. Reinhardt, Ann. Rev. Phys. Chem. 33, 223 (1982).

    Google Scholar 

  24. Y. K. Ho, Phys. Rep. 1, 99 (1983).

    Google Scholar 

  25. B. Simon, Phys. Lett. A 71, 211 (1979).

    Google Scholar 

  26. J. D. Morgan and B. Simon, J. Phys. B14, L167 (1981).

    Google Scholar 

  27. E. Balslev, in Resonances-Models and Phenomena Lectures Notes in Physics 211, (Eds. S. Albeverio, L. S. Ferreira and L. Streit, Springer Verlag, Heidelberg 1984) page 27.

    Google Scholar 

  28. M. Reed and B. Simon, Methods of Modern Mathematical Physics IV, Analysis of Operators (Academic Press, New York, 1978) page 183–191.

    Google Scholar 

  29. M. Rittby, N. Elander and E. Brändas, Int. J. Quant. Chem. 23, 865 (1983).

    Google Scholar 

  30. P. Erman in Specialist Periodic Reports Vol 6 (Chem. Soc. London, 1979) page 501.

    Google Scholar 

  31. C. P. Edwards, C. S. MacLean and P. J. Sarre, Mol. Phys. 52, 1453 (1984).

    Google Scholar 

  32. M. S. Childs in Molecular Spectroscopy,Vol. 2 (Eds. R. F. Barrow, D. A. Long and D. J. Millen Chem. Soc. Specialist Periodical Report London 1974) page 466.

    Google Scholar 

  33. H. Lefebvre-Brion and R. Colin J. Mol. Spectrosc. 65, 33 (1977).

    Google Scholar 

  34. R. D. Levine, B. R. Johnson and R. B. Bernstein, J. Chem. Phys. 50, 1694 (1969).

    Google Scholar 

  35. G. Sillén, M. Rittby, N. Elander and E. Briindas, J. Chem. Phys. submittted (1988).

    Google Scholar 

  36. O. Atabek and R. Lefebvre, Chem. Phys 52, 199 (1980).

    Google Scholar 

  37. O. Atabek and R. Lefebvre, Chem. Phys 55, 395 (1981).

    Google Scholar 

  38. O. Atabek and R. Lefebvre, Chem. Phys 56, 195 (1981).

    Google Scholar 

  39. B. R. Johnson, J. Chem. Phys. 69, 4678 (1978).

    Google Scholar 

  40. L. Klynning and H. Martin, Physica Scripta 20, 594 (1979).

    Google Scholar 

  41. J. M. Robbe, Thesis, L'Universite des Sciences et Techniques de Lille (1978).

    Google Scholar 

  42. M. S. Childs and R. Lefebvre, Chem. Phys. Lett. 55, 213 (1978)

    Google Scholar 

  43. L. E. Selin Ark. Fys. 21, 529 (1962).

    Google Scholar 

  44. W. J. Balfour and H. M. Cartwright, Can. J. Phys. 54, 1898 (1976).

    Google Scholar 

  45. W. J. Balfour and H. M. Cartwright, Astron. Astrophys. Suppl. 26 389 (1976).

    Google Scholar 

  46. W. J. Balfour and B. Lindgren, Can. J. Phys. 56, 767 (1978).

    Google Scholar 

  47. M. Rittby, Thesis, University of Stockholm (May 1985).

    Google Scholar 

  48. H. J. Korsch, R. Möhlenkamp and K. E. Thylwe, J. Phys. B19, 2151 (1986).

    Google Scholar 

  49. H. J. Korsch and R. Möhlenkamp, Phys. Rev. A34, 4716 (1986).

    Google Scholar 

  50. O. Atabek, R. Lefebvre and A. Jacon, J. Phys. Bxx, yy (198ZZ).

    Google Scholar 

  51. C. J. Williams, K. F. Freed, S. J. Singer and Y. B. Band, Faraday Discuss. Chem. Soc. 82, paper 6 (1986).

    Google Scholar 

  52. S. J. Singer K. F. Freed and Y. B. Band, J. Chem. Phys. 79, 6060 (1983).

    Google Scholar 

  53. S. J. Singer, K. F. Freed and Y. B. Band, J. Chem. Phys. 81, 3064 (1984).

    Google Scholar 

  54. S. J. Singer, K. F. Freed and Y. B. Band, J. Chem. Phys. 81, 3091 (1984).

    Google Scholar 

  55. C. J. Williams and K. F. Freed, J. Chem. Phys. 85, 2699 (1986).

    Google Scholar 

  56. S. Lee, C. J. Williams and K. F. Freed. Chem. Phys. Lett. 130, 271 (1986).

    Google Scholar 

  57. X. He, O. Atabec and A. Suzor Submitted to Phys. Rev. A (1988).

    Google Scholar 

  58. M. Hehenberger, H. V. McIntosh and E. Brändas, Phys. Rev. A10, 1494 (1974).

    Google Scholar 

  59. E. Brändas, M. Hehenberger and H. V. McIntosh, Int. J. Quantum Chem. 9, 103 (1975).

    Google Scholar 

  60. M. Hehenberger, B. Laskowski and E. Brändas, J. Chem. Phys. 65, 4559 (1976).

    Google Scholar 

  61. M. Hehenberger, P. Froelich and E. Brändas, J. Chem. Phys. 65, 4571 (1976).

    Google Scholar 

  62. E. Engdahl, E. Brändas, M. Rittby and N. Elander, J. Math. Phys. 27, 2629 (1986).

    Google Scholar 

  63. P. Krylstedt, N. Elander and E. Brändas, Int. J. Quantum Chem Symp. 20, 253 (1986).

    Google Scholar 

  64. P. Krylstedt, M. Rittby, N. Elander and E. Brändas, J. Phys. B in press 1987.

    Google Scholar 

  65. P. Krylstedt, N. Elander and E. Brändas, submitted to J. Phys. B 1987.

    Google Scholar 

  66. E. Brändas, E. Engdahl, M. Rittby and N. Elander, Int. J. Quantum Chem. S19, 457 (1986).

    Google Scholar 

  67. M. Rittby, N. Elander and E. Brändas, this book page 133.

    Google Scholar 

  68. D. W. Norcross and M. J. Seaton, J. Phys. B6 614,1973.

    Google Scholar 

  69. R. Lefebvre in Intramolecular Dynamics (Eds. J. Jortner and B. Pullman, D. Reidel Publ. Comp., Paris, 1982).

    Google Scholar 

  70. R. Lefebvre, in ACS SYMPOSIUM SERIES 263 Resonances in ElectronMolecule Scattering, van der Waals Complexes and Reactive Chemical Dymamics (Ed. D. Truhlar, American Chem. Soc. Washington D.C. 1984).

    Google Scholar 

  71. A. Fröman, J. Chem. Phys. 36, 1490 (1962).

    Google Scholar 

  72. F. T. Smith Phys. Rev. 118, 349 (1960).

    Google Scholar 

  73. B. Andresen and S. E. Nielsen, Mol. Phys., 21, 523 (1971).

    Google Scholar 

  74. J. B. Delos Rev. Mod. Phys. 53, 287 (1981).

    Google Scholar 

  75. J. Garquad, Phys. B14, 2259 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erkki Brändas Nils Elander

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Brändas, E., Rittby, M., Elander, N. (1989). Multichannel complex scaled Titchmarsh Weyl theory a model for diatomic fragmentation. In: Brändas, E., Elander, N. (eds) Resonances The Unifying Route Towards the Formulation of Dynamical Processes Foundations and Applications in Nuclear, Atomic and Molecular Physics. Lecture Notes in Physics, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-50994-1_49

Download citation

  • DOI: https://doi.org/10.1007/3-540-50994-1_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50994-3

  • Online ISBN: 978-3-540-46130-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics