Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 325))

Abstract

The inclusion of single particle Gamow functions as building blocks in nuclear calculations is presented here through three different examples. We show that it is a quick method which enables us to account for the most important features of the continuum effect.

On leave from: Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, Pf. 51, Hungary

Fellow of the CONICET, Buenos Aires, Argentina

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Humblet and L. Rosenfeld, Nucl. Phys., 26, 529 (1961).

    Article  Google Scholar 

  2. A. J. F. Siegert, Phys. Rev., 36, 750 (1939).

    Article  Google Scholar 

  3. A. M. Lane and R. G. Thomas, Rev. Mod. Phys., 30, 257 (1958).

    Google Scholar 

  4. P. L. Kapur and R. E. Peierls, Proc. Roy. Soc., 166A, 277 (1938).

    Google Scholar 

  5. G. Gamow, Z. Phys., 51, 204 (1928).

    Google Scholar 

  6. H. M. Nussenzveig, Nucl. Phys., 11, 499 (1959).

    Google Scholar 

  7. Y. B. Zel'dovich, Zh. Eksp. i Theor. Fiz., 39, 776 (1960); Sov. Phys. JETP, 12, 542 (1961).

    Google Scholar 

  8. N. Hokkyo, Prog. Theor. Phys., 33, 1116 (1965).

    Google Scholar 

  9. T. Berggren, Nucl. Phys., 109A, 265 (1968).

    Google Scholar 

  10. W. J. Romo, Nucl. Phys., 116A, 617 (1968).

    Google Scholar 

  11. B. Gyarmati and T. Vertse, Nucl. Phys., 160A, 523 (1971).

    Google Scholar 

  12. B. Simon, Phys. Lett., 71A, 211 (1979).

    Google Scholar 

  13. J. Bang and J. Zimânyi, Nucl. Phys., 139A, 534 (1969).

    Google Scholar 

  14. B. Gyarmati, T. Vertse, J. Zimânyi and M. Zimânyi, Phys. Rev., 1C, 1 (1970).

    Google Scholar 

  15. B. Gyarmati, T. Vertse, Nucl. Phys., 182A, 315 (1972).

    Google Scholar 

  16. W. R. Coker, Phys. Rev., 9C, 784 (1974); 7C 2426 (1973).

    Google Scholar 

  17. H. S. Bradlow, W. D. M. Rae, P. S. Fisher, N. S. Godwin, G. Proudfoot and D. Sinclair, Nucl. Phys., 314A, 171 (1979).

    Google Scholar 

  18. G. Garcia-Calderon and R. Peierls, Nucl. Phys., 265A, 443 (1976).

    Google Scholar 

  19. T. Vertse, K. F. Pál and Z. Balogh, Comp. Phys. Comm., 27, 309 (1982).

    Google Scholar 

  20. M. Baldo, L. S. Ferreira, L. Streit, Nucl. Phys., 467A, (1987).

    Google Scholar 

  21. B. Gyarmati, A. T. Kruppa, Z. Papp and G. Wolf, Nucl. Phys., 417A, 393 (1984).

    Google Scholar 

  22. Z. Papp, J. Phys. A, 20, 153 (1987).

    Google Scholar 

  23. B. Gyarmati and A. T. Kruppa, Phys. Rev., C34, 95 (1986).

    Google Scholar 

  24. K. F. Pál, J. Phys. A, 18, 1665 (1985).

    Google Scholar 

  25. B. G. Giraud, M. V. Mihailovic, R. G. Lovas and M. A. Nagarajan, Ann. Phys. (N.Y.), 140, 29 (1982).

    Google Scholar 

  26. G. F. Bertsch, P. F. Bortignon and R. A. Broglia, Rev. Mod. Phys., 55, 287 (1983).

    Google Scholar 

  27. B. Buck and A. D. Hill, Nucl. Phys., A95, 271 (1967).

    Google Scholar 

  28. C. Mahaux and H. A. Weidenmüller, Shell model approach to nuclear reactions, North Holland, Amsterdam (1984) p. 393.

    Google Scholar 

  29. S. Shlomo and G. Bertsch, Nucl. Phys., 243A, 507 (1975).

    Google Scholar 

  30. T. Vertse, P. Curutchet, O. Civitarese, L. S. Ferreira and R. J. Liotta, Phys. Rev., 37C, 876 (1988).

    Google Scholar 

  31. A. Bohr and B. Mottelson, Nuclear Structure, Vol 2, Benjamin, New York, (1975).

    Google Scholar 

  32. D. R. Bes, R. A. Broglia and B. S. Nilsson, Phys. Rep., 16C, 1 (1975).

    Google Scholar 

  33. NAG library manual, Oxford, (1982).

    Google Scholar 

  34. T. Berggren, Phys. Lett., 73B, 389 (1978).

    Google Scholar 

  35. G. Co' and S. Krewald, Nucl. Phys., 333A, 392 (1985).

    Google Scholar 

  36. G. F. Bertsch and I. Hamamoto, Phys. Rev., 26C, 1323 (1982).

    Google Scholar 

  37. L. Rydström and J. Blomqvist, Annual Report Research Institute of Physics, Stockholm (1980) p. 86.

    Google Scholar 

  38. F. E. Bertrand, E. E. Gross, D. J. Horen, R. O. Sayer, T. P. Sjoreen, D. K. Mc Daniels, J. Lisanti, J. R. Tinsley, L. W. Swenson, J. B. Mc Clelland, T. A. Carey, K. Jones and S. J. Seestrom-Morris, Phys. Rev., 34C, 45 (1986).

    Google Scholar 

  39. O. Civitarese, computer code RPAPH, available at the Niels Bohr Institute, Copenhagen.

    Google Scholar 

  40. D. R. Bes, P. Curutchet, S. L. Reich, N. N. Scoccola and H. M. Sofia, Nucl. Phys., 452A, 531 (1986).

    Google Scholar 

  41. S. G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szymanski, S. Wyceck, G. Gustafson, I. L. Lamm, P. Moller and B. Nilsson, Nucl. Phys., 131A, 1 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erkki Brändas Nils Elander

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Vertse, T., Curutchet, P., Liotta, R.J. (1989). The use of Gamow functions in nuclear problems. In: Brändas, E., Elander, N. (eds) Resonances The Unifying Route Towards the Formulation of Dynamical Processes Foundations and Applications in Nuclear, Atomic and Molecular Physics. Lecture Notes in Physics, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-50994-1_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-50994-1_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50994-3

  • Online ISBN: 978-3-540-46130-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics