Advertisement

Parallel algorithms in image processing

  • Wolfgang Wilhelmi
Invited Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 342)

Abstract

Many methods of image restoration, geometric rectification, and image pattern recognition can be described by local operators. Processor arrays with centralized control accomplishing SIMD processing are considered as effective means for these tasks. The paper explains the main ideas and the theoretical background of representants of the before mentioned methods.

Keywords

Processing Element Parallel Implementation Processor Array Exchange Step Digital Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. /1/.
    Quinn, M.J.: Designing Efficient Algorithms for Parallel Computers. McGraw-Hill 1987.Google Scholar
  2. /2/.
    Evans, D.J.(Ed.) Parallel Processing Systems. Cambridge University Press, Cambridge 1982.Google Scholar
  3. /3/.
    Freundt, S.: Angepaßte Filterung von speckleverrauschten Bildern durch Anwendung des Wiener-Filters. Technical Report ZKI Juli 1987.Google Scholar
  4. /4/.
    Wassmuth, A.: Grundlagen und Anwendungen der statistischen Mechanik. Friedr. Vieweg & Sohn, Braunschweig 1915.Google Scholar
  5. /5/.
    Geman, St.; Geman, D.: Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE-Trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI-6 (1984). No. 6. (November), pp. 721–741.Google Scholar
  6. /6/.
    Murray, D. W.; Kashko, A.; Buxton, H.: A parallel approach to the picture restoration algorithm of Geman and Geman on a SIMD Machine. Image and Vision Computing vol. 4 (1986) No. 3 (August), pp. 133–142.Google Scholar
  7. /7/.
    Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A.H.; Teller, E.: Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. Vol.21 (1953), pp. 1087–1091Google Scholar
  8. /8/.
    Kempe, V.; Rebel, B.; Wilhelmi, W.: The Interactive Image Processing Console A 6471. Proc. 6 ICPR München Okt. 1982, pp. 607–609.Google Scholar
  9. /9/.
    Colletti, N.B.: Image Processing on MPP-like Arrays. Rep. No. UIUCDCS-R-83-1132. Univ. of Illinois Urbana 1982.Google Scholar
  10. /10/.
    Arabnia, H.R.; Oliver, M.A.: Arbitrary Rotation of Raster Images with SIMD Machine Architectures. Computer Graphics Forum 6 (1987) pp. 3–12.Google Scholar
  11. /11/.
    Luth, N.: Affine Transformations on Images Represented by a List Data Structure. Proc. CAIP 87 Wismar Sept. 1987, pp. 95–100.Google Scholar
  12. /12/.
    Wilhelmi, W.: Geometric Transformations of Raster Images on SIMD Processors. Proc. IV. International Conference on Image Analysis and Proc. Cefalu Sept. 1987.Google Scholar
  13. /13/.
    Baudet, G.; Stevenson, D.: Optimal Sorting Algorithms for Parallel Computers. IEEE-Trans on Computers C-27 (1978), No. 1, pp. 84–87.Google Scholar
  14. /14/.
    Thompson, C.D.; Kung, H.T.: Sorting on a Mesh-Connected Parallel Computer. Comm. of the ACM Vol. 20 (1977), No. 4, pp. 263–271.Google Scholar
  15. /15/.
    Pavlidis, T.: Algorithms for Graphics and Image Processing. Computer Science Press Inc. 1982, Rockville (USA).Google Scholar
  16. /16/.
    Saedler, J.: Anwendungsbeispiel Verdünnung. ZKI-Information 2/84: Programmier-werkzeuge und Anwendungsprogramme des Bildverarbeitungssystems A6470, pp. 9–30...9–39.Google Scholar
  17. /17/.
    Saedler, J.; Wilhelmi, W.; Kovalevski, W.; Eichhorn, N.: Implementierte Algorithmen auf dem Displayprozessor K2027. Bild und Ton 39(1986), Nr. 5, pp. 140–145 und Nr. 6, pp. 165–173.Google Scholar
  18. /18/.
    Saedler, J.; Gössel, M.: Patent WP GO6K2978102 — Verfahren zur schnellen Verarbeitung von Linienbildern Dez. 1986.Google Scholar
  19. /19/.
    Saedler, J.; Gössel, M.: Parallele Berechnung von Linienkodierungen mit einem Displayprozessorsystem und seine Anwendungen zur Krümmungsberechnung (to be published).Google Scholar
  20. /20/.
    Hung, S.H.Y.; Kasvand, T.: Linear Approximation of Quantized Thin Lines. In R. H. Haralick (Ed.): Pictorial Data Analysis, Springer Verlag 1983, pp. 15–28.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Wolfgang Wilhelmi
    • 1
  1. 1.Akademie der Wissenschaften der DDRZentralinstitut für Kybernetik und InformationsprozesseBerlinDDR

Personalised recommendations